

Communication Systems Filtering using NLP

Hafsa Traore, Madison Lewis, Ahmed Abdelgalil

What is Natural Language Processing (NLP)?

- Branch of Artificial Intelligence (AI) that uses machine learning to process and interpret text and data.
- Allows computers to understand, interpret, and manipulate human language.
- Examples :
 - Smart assistants (Siri, Alexa, etc.)
 - Spell check
 - Voice text messaging
 - Autocomplete
- Use cases:
 - Improve user experience
 - Ex: autocorrect
 - Automate support
 - Ex: chatbots
 - Monitor & analyze feedback
 - Ex: Analyze user reviews

Communication System Prioritization

- Categorize priority of the following
 - Email
 - Text
- Current communication systems:
 - Normally filtered by sender
- NLP Systems provides:
 - Efficient labeling for High Priority/ Spam Emails & Text
- Outcomes:
 - High Priority \rightarrow Quick Response time
 - Quick Response time \rightarrow Satisfied Users

The Importance of Email Response Times

In Google consumer research conducted by Arise (2019), consumers were asked how quickly they expected a response to their email:

900% more interest that those taking 10 minutes (Insidesales, 2016)

Priority Filtering

Use filtering process & NLP for determination of level of priority:

- Important (High priority)
- Neutral
- Spam

High Priority

- Text requiring immediate attention from actual people/peers
 - Domain names
 - Signature

Spam

• This is taken into consideration by using NLP for model and training

Neutral Priority

• Considered Neutral if not classified as high priority or spam

Implementation (Overview)

Step 1: Data Preprocessing

- After the text is received via email/SMS, in this stage it is prepared for model building. Some examples of this preprocessing include removing:
 - Whitespace between text
 - Hyperlinks

Step 2: Removal of "Stop Words"

- After the text received is broken down into its smallest unit, unnecessary data is once again removed.
 - helps with efficiency of the model by reducing time spent and program size.

•	Unwanted Characters:		Sample text with Stop	Without Stop Words
	0	And	Words	
	0	Though	GeeksforGeeks – A Computer	GeeksforGeeks , Computer Science,
	0	So	Science Portal for Geeks	Portal ,Geeks
	0	What	Can listening be exhausting?	Listening, Exhausting
	Ŭ		I like reading, so I read	Like, Reading, read

Step 3: Tokenization

- This is the process of taking the processed data (text) and breaking it into its smallest unit.
 - Ex: sentences are broken down into words. Words are broken down into prefixes and suffixes.

Q	Search this file				
1	Form	Suffix	Stem		
2	running	-ing	run		
3	runs	-s	run		
4	consolidate	-ate	consolid		
5	consolidated	-ated	consolid		

Step 4: Lemmatization

- In this stage, the mode performs a text-preprocessing technique. This technique allows the NLP model to sort words by grouping variant forms of the same word.
 - Ex: gone, going, and went are all mapped to go

Q	Search this file	2	
1 2 3	Form Morphological Information		Lemma
	studies	Present tense of the word study	study
	ran	Past tense of the word run	run
			•

Step 5: Classification

