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ABSTRACT

In this paper we address sequence estimation when the In-
terSymbol Interference (ISI) communication channel is un-
known and time varying. We employ a Maximum A Pos-
terior (MAP) approach, in which the unknown channel pa-
rameters are assigned a distribution and integrated out. For
several channel models of interest we describe both the ex-
act MAP estimator and Viterbi algorithm based implemen-
tations. We also present EM algorithms for solving these
MAP sequence estimation problems, and we contrast these
EM solutions with direct MAP algorithms.

1. INTRODUCTION

Maximum Likelihood Sequence Estimation (MLSE) is widely
used in digital communication systems to estimate the trans-
mitted data sequence observed over noisy ISI channels. For
an unknown channel, many algorithms have been developed
to estimate the sequence and/or identify the channel blindly.
In this paper we focus on direct sequence estimation for un-
known, fast time-varying channels.

Per-Survivor Processing (PSP) [1] has been proposed
for MLSE with fast time-varying channels. In [2], we de-
scribe an approach to MLSE based on probabilistic model-
ing of the fast time-varying channel. We formulate the MAP
sequence estimator, assign a prior distribution to the param-
eters of a time-varying channel model, and marginalize over
the channel parameters. For temporally independent Gaus-
sian channels, an optimum Viterbi algorithm is derived. For
Gauss-Markov channels, a PSP approach based on the gen-
eralized Viterbi algorithm (GVA) [3] is described which re-
tains a fixed number of survivors (L) per trellis state. We
show that the proposed method approaches that of ML ex-
haustive search for reasonably small values of L.

In [4], we employ the EM algorithmic approach to solve
the MAP problem described in [2]. This approach is similar
to other EM based approaches to direct sequence estima-
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tion (e.g. [5, 6, 7, 8]), but is unique in its focus on exploit-
ing prior information on fast time-varying channel models
to improve performance. The EM method for iterative so-
lution of Maximum Likelihood (ML) and MAP estimation
problems for continuous parameters was introduced into the
signal processing community by Dempster, et al. [9]. With
EM, convergence and initialization are important consider-
ations. Wu [10] proved convergence to a local minimum
or saddle point of the negative log likelihood function for
the continuous parameter case. This holds true for the MAP
problem posterior density [11]. For the problem of discrete
parameter (e.g. sequence) estimation, convergence is less
understood. In [11] it is claimed that for certain discrete
parameter estimation EM problems, including the one ad-
dressed in [4], EM is guaranteed to converge to a stationary
point of the posterior density. In this paper we show that this
claim is not true, and that EM is not guaranteed to converge
to a stationary point. Nonetheless, numerous researchers
have shown that EM can be used effectively for sequence
estimation.

In this paper we describe and contrast direct and EM
iterative algorithms for MAP sequence estimation with un-
known, fast time-varying channels.

2. DATA MODEL

In the discrete-time FIR model of a time-varying noisy com-
munications channel with inter-symbol interference, for the
received data sequence up to time n, the received data rk at
time k is given by

rk = aTkhk + nk; k = 1; : : : ; n ; (1)

where aT
k

is a complex row vector containing transmitted
data fak�i+1; i = 1; : : : ;Mg, M is the FIR channel length,
hk is a complex column vector containing the channel im-
pulse response coefficients, and nk is the white Gaussian
complex noise with variance �2. LetH = [h1; : : : ;hn] rep-
resent the matrix of channel coefficient vectors over time,
and let A = [a1; : : : ; an]T represent the matrix of transmit-
ted data. Also let r = [r1; : : : ; rn]T and n = [n1; : : : ; nn]T .



With this notation, the probability density function of the re-
ceived data, given H and A, is

f(rjH;A) =
1

(��2)n

nY
k=1

e�
jrk�a

T

k
hkj

2

�2 : (2)

To minimize BER, we find A to maximize f(Ajr) (i.e. the
MAP estimator). This is equivalent to maximizing f(rjA)f(A).
If f(A) is unknown or assumed to be uniform, then the ML
estimator which maximizes the likelihood function f(rjA)
is used. Referring to (2), if the channel is known, the Viterbi
algorithm can be used directly to estimate the data sequence.
If the channel is unknown, the dependence of f(rjA) on the
random channel coefficients is

f(rjA) = E[f(rjH;A)] =

Z
H

f(rjH;A)f(H)dH :

(3)

3. MAP SEQUENCE ESTIMATION

Here we summarize results from [2]. For channel coeffi-
cients which are independent over time, f(H) can be ex-
pressed as

f(H) =
nY
k=1

f(hk): (4)

If f(hk) is Gaussian with mean dk and covariance Ck, then

f(hk) =
1

�M jCkj
e�(hk�dk)

�T
C
�1

k
(hk�dk); (5)

where � denotes conjugate. We assume that dk and Ck are
known. Substituting (2) and (4) into (3), taking the negative
natural logarithm of the integration result and ignoring the
terms that are irrelevant to the minimization, we obtain:

� log(f(rjA))
:
=

nX
k=1

jrk � aT
k
dkj

2

�2
k

+ log(�2
k
) ; (6)

where
�2k = �2 + aTkCka

�

k (7)

and
:
= denotes equivalent for optimization purposes. The

time-recursive form for (6) is obvious, and since the incre-
mental cost only depends on the state transition at the cur-
rent time, the Viterbi algorithm can be used directly as an
efficient, exact MAP (optimum) algorithm.

For a fast time-varying channel with Gauss-Markov fad-
ing parameters, the optimum solution is derived in [2] where
a computationally effective suboptimum algorithm based on
PSP and GVA is also proposed.

Concerning PSP, for each trellis survivor path the quan-
tities involved in the transition cost are computed by chan-
nel model aided estimation as dictated by the MAP formu-
lation. As per GVA, at each state of each stage of the trellis,
we keep L � 1 survivors. We show that for reasonable L
the algorithm approaches optimum results.

4. EM ALGORITHMS

Here we summarize results from [4] and discuss EM con-
vergence for sequence estimation. To maximize (3) using
EM, define the auxiliary function [9]:

Q(AjB) = E[log(f(r;HjA)) jr;B]

=

Z
H

log(f(r;HjA))f(Hjr;B)dH; (8)

where we desire the MAP estimate of A, and B represents
the current estimate of A. In EM terminology, r is the ob-
served data, H is the hidden data, and (r;H) is the com-
plete data. The general EM algorithm for this problem is:
(i) initializeB to an estimate ofA; (ii) the E-step (Expecta-
tion) (i.e. construct Q(AjB)); (iii) the M-step (Maximiza-
tion) (i.e. maximize Q(AjB) with respect to A); and (iv)
set B = A and repeat steps (ii) and (iii) until convergence.

Q(AjB) may be written as

Q(AjB)
:
=

Z
H

log(f(rjH;A))f(rjH;B)f(H)dH: (9)

Note that in the above steps, ifQ(AjB) � Q(BjB) then ac-
cording to Jensen’s inequality, f(rjA) � f (rjB) [9]. How-
ever, this does not prove convergence of EM to a local max-
imum of the log likelihood function. For discrete parameter
estimation, we will address this issue below.

Using (2) in (9) and dropping constants:

Q(AjB)
:
=

Z
H

�

NX
k=1

jrk � aT
k
hkj

2 f(Hjr;B)dH; (10)

f(Hjr;B)
:
= f(H)

NY
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h
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If we assume that the elements of H are independent over
time, then f(H) can be written as in (4), and f(Hjr;B)
becomes

f(Hjr;B)
:
=

nY
k=1

f(hk) e
�

jrk�b
T

k
hkj

2

�2 : (12)

Using (12) in (10) we obtain

Q(AjB)
:
= �

nX
k=1

Vk; (13)

Vk
4

= jrk � aTk gkj
2 + aTkGka

�

k (14)

gk
4
= E[hkjr;B] (15)

Gk

4
= E[(hk � gk)(hk � gk)

�T jr;B]: (16)

Vk represents the Viterbi algorithm incremental cost. In [4]
we provide a detailed derivation for both this independent
Gaussian channel, and a more realistic Gauss-Markov chan-
nel model.



A Note on EM Convergence: For discrete or continuous
parameter estimation, it was pointed out above that Jensen’s
inequality holds, proving that at each iteration of the EM al-
gorithm the negative log likelihoodfunction is not increased.
For continuous parameter estimation, it is well known the
the EM algorithm converges to a minimum or saddle point
of the negative log likelihoodfunction (for a proof, see [10]).
This proof is based on the global convergence theorem [12],
which is now stated.

Let E denote an algorithm on A which, given an initial
estimate A0 generates a sequence fAk; k = 1; 2; ::::g as
Ak+1 2 E(Ak). Let � � A be the solution set. Under the
conditions:

1. all pointsAk are contained in a compact set S � A;

2. there is a continuous functionZ on A such that

(a) if Ak =2 �, then Z(Ak+1) < Z(Ak) for all
Ak+1 2 E(Ak)

(b) if Ak 2 �, then Z(Ak+1) � Z(Ak) for all
Ak+1 2 E(Ak) :

3. the mapping E is closed at points outside �,

the limit of any convergent subsequence of fAkg is a solu-
tion in �.

Let fAkg 2 A denote a sequence in the discrete space
A of possible sequence estimates. Let E represent the EM
algorithm, and Z(Ak) = � logf(rjAk). For discrete pa-
rameter estimation, condition 1 does not hold since there is
not a compact subset S � A, since A is a discrete set. As
illustrated below, condition 2(a) also does not hold. This is
because Ak 2 E(Ak) is possible when Ak =2 �. Thus, the
global convergence theorem is not generally applicable to
the EM algorithm for discrete parameter estimation.

We now show by example that EM does not necessar-
ily converge to a local discrete minimum of the negative log
likelihood function. For the independent Gaussian channel
model, let n = 1 and M = 3, which are small enough to
completely analyze by hand to confirm the results. A single
BPSK symbol a1 at time 1 is to be estimated as either +1 or
–1. The channel is initialized as a1 = [a1 a0 a�1]T = [a1
-1 -1]T . For the Gaussian model for the channel coefficients
we assume mean d1 = [1 1 1]T and covariance C1 = vI
with v = 0:05. The noise variance is �2 = 0:3. The neg-
ative log-likelihood cost function of the received data r1
given a1 is obtained from (6) and (7). Figure 1(d) illus-
trates the MAP cost function for r1 = �1:8, which is in the
range of r1 where EM breaks down, as discussed below.

For the EM algorithm, letting b1 represent an estimate
of a1, the conditional mean and covariance of the channel
coefficients given the received data are

g1 = d1 +
C1b1(r1 � bT1 d1)

�21
(17)
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Fig. 1. Estimates of a1 vs. r1: (a) Discrete MAP, (b) Dis-
crete EM, (c) Continuous MAP and EM; (d) MAP cost vs.
a1.

G1 = C1 �
C1b1b

T

1C1

�21
; (18)

with �21 = �2 + bT1C1b1. The EM cost function is

V1 = �Q(a1jb1)
:
= jr1 � aT1 g1j

2 + aT1G1a1: (19)

The EM algorithm was initialized using b1 = [-1 -1 -1]T .
Figures 1(a)-(b) show the MAP and EM discrete estimates
of a1 vs. received data r1. Note the range of values �2 �
r1 � �1:7 over which the discrete EM estimate is “wrong”
in Figure 1(b), i.e. it is not only not equal to the MAP so-
lution, it is not even a local minimum or stationary point of
the negative log-likelihood function as can be seen in Figure
1(d). Over the range �2 � r1 � �1:7, the EM algorithm
does not iterate, it is converged after initialization. As an
aside, Figure 1(c) shows the EM and MAP estimates (which
are identical) for a1 estimated as a continuous parameter.

This example illustrates that for discrete parameter es-
timation EM can get stuck at a solution A which is not a
local discrete minimum of the negative log likelihood func-
tion. By this we mean that there may be an estimate A

0

that differs from the EM solution A in only one element
and that has a lower negative log likelihood cost. We have
observed this phenomenon for EM algorithm solutions to
several communications and tracking related discrete pa-
rameter estimation problems. Nonetheless, researchers have
found EM to be useful for discrete parameter estimation.
The point here is that care must be taken in employing EM
for discrete parameter estimation since convergence to a
minimum of the cost can not be guaranteed.
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Fig. 2. BER for Gauss-Markov PSP
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Fig. 3. BER for different Gauss-Markov EM initializations

5. NUMERICAL RESULTS

Figures 2 and 3 show typical results from Monte-Carlo sim-
ulations using Gauss-Markov channel coefficients. Figure
2 shows the direct MAP PSP GVA algorithm for a Gauss-
Markov channel with zero mean and covariance C = vI
with v = 0:001. This illustrates that even for small L near
optimum results can be obtained. Figure 3 is a comparison
of EM and direct MAP, using parameters n = 10, M = 3,
� = 0:995, v = 0:01, d = 0, and C = v I. The direct
MAP BER results were obtained by an exhaustive search of
the ML cost function. Two different initializations for the
EM algorithm were used, both of which produce unreason-
ably large BER. Initialization 1 (init #1) used knownh1 and
hk = �hk�1; k = 2 : : :n. Initialization 2 used known h1
and 0’s for the initial symbol estimates. Other researchers
have found that EM initialization can be improved using pi-
lot bits. We have performed many simulations which con-
firm that EM with proper initialization can provide MAP
results.

6. SUMMARY

We describe MAP, approximate (PSP based) MAP and EM
algorithms for sequence estimation for fast time-varying chan-
nels. Comparing EM with direct MAP, EM offers computa-
tional advantages. However, with EM, since the parameters
to be estimated are discrete valued, extra care must be taken
in initializing the algorithm.
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