next up previous
Next: Bayesian Track Estimation Up: Problem Formulation Previous: Candidate Tracks

Candidate Track Sets

Now consider a set of K tracks. Assume tracks can not share detections, and again assume missed detections are possible. It can be shown that the number of candidate track sets is 3

 \begin{displaymath}
I_n^{'} = \left( \sum_{j=0}^{K}
\left( \begin{array}{c} {J_...
...ay}{c} {J_m} \\ j \end{array} \right)}{(K-j)!} \right)
\right)
\end{displaymath} (6)

Let the ith candidate K-track set be represented as

\begin{displaymath}\mbox{\boldmath$\tau$ }_n^i = \{ \mbox{\boldmath$\theta$ }_n^...
...
\mbox{\boldmath$\theta$ }_n^{l_K (i)} \} \; \; \; , \nonumber
\end{displaymath}  

where the superscript lk (i) denotes the kth track of the ithtrack set. ${\cal Z} ( \mbox{\boldmath$\tau$ }_n^i )$ will be used to denote the measurement data associated with the ith K-track set.



Rick Perry
1999-03-10