MOUNT(8)                              System Administration                              MOUNT(8)

NAME
       mount - mount a filesystem

SYNOPSIS
       mount [-l|-h|-V]

       mount -a [-fFnrsvw] [-t fstype] [-O optlist]

       mount [-fnrsvw] [-o options] device|dir

       mount [-fnrsvw] [-t fstype] [-o options] device dir

DESCRIPTION
       All  files  accessible  in a Unix system are arranged in one big tree, the file hierarchy,
       rooted at /.  These files can be spread out  over  several  devices.   The  mount  command
       serves  to  attach  the filesystem found on some device to the big file tree.  Conversely,
       the umount(8) command will detach it again.  The filesystem is used to control how data is
       stored on the device or provided in a virtual way by network or another services.

       The standard form of the mount command is:

              mount -t type device dir

       This  tells the kernel to attach the filesystem found on device (which is of type type) at
       the directory dir.  The option -t type is optional.  The mount command is usually able  to
       detect a filesystem.  The root permissions are necessary to mount a filesystem by default.
       See section "Non-superuser mounts" below for more details.  The previous contents (if any)
       and  owner  and  mode  of  dir  become  invisible,  and as long as this filesystem remains
       mounted, the pathname dir refers to the root of the filesystem on device.

       If only the directory or the device is given, for example:

              mount /dir

       then mount looks for a mountpoint (and if not found then for a device) in  the  /etc/fstab
       file.  It's possible to use the --target or --source options to avoid ambivalent interpre-
       tation of the given argument.  For example:

              mount --target /mountpoint

   Listing the mounts
       The listing mode is maintained for backward compatibility only.

       For more robust and customizable output use findmnt(8), especially in your scripts.   Note
       that control characters in the mountpoint name are replaced with '?'.

       The following command lists all mounted filesystems (of type type):

              mount [-l] [-t type]

       The option -l adds labels to this listing.  See below.

   Indicating the device and filesystem
       Most  devices are indicated by a filename (of a block special device), like /dev/sda1, but
       there are other possibilities.  For example, in the case of an NFS mount, device may  look
       like  knuth.cwi.nl:/dir.  It is also possible to indicate a block special device using its
       filesystem label or UUID (see the -L and -U options below),  or  its  partition  label  or
       UUID.  Partition identifiers are supported for example for GUID Partition Tables (GPT).

       The  device  name  of  disk  partitions  are unstable; hardware reconfiguration, adding or
       removing a device can cause change in names. This is reason why it's strongly  recommended
       to use filesystem or partition identificators like UUID or LABEL.

       The  command  lsblk  --fs  provides overview of filesystems, LABELs and UUIDs on available
       block devices.  The command blkid -p <device> provides details about a filesystem  on  the
       specified device.

       Don't  forget  that  there  is no guarantee that UUIDs and labels are really unique, espe-
       cially if you move, share or copy the device.  Use lsblk -o +UUID,PARTUUID to verify  that
       the UUIDs are really unique in your system.

       The    recommended    setup    is    to    use   tags   (e.g.   UUID=uuid)   rather   than
       /dev/disk/by<label,uuid,partuuid,partlabel} udev symlinks in the /etc/fstab  file.   Tags
       are  more  readable,  robust and portable.  The mount(8) command internally uses udev sym-
       links, so the use of symlinks in /etc/fstab has no advantage over tags.  For more  details
       see libblkid(3).

       Note  that  mount(8)  uses  UUIDs  as  strings.   The  UUIDs from the command line or from
       fstab(5) are not converted to internal binary representation.  The  string  representation
       of the UUID should be based on lower case characters.

       The  proc  filesystem  is  not  associated with a special device, and when mounting it, an
       arbitrary keyword, such as proc can be used instead of a device specification.  (The  cus-
       tomary  choice  none  is  less fortunate: the error message `none busy' from umount can be
       confusing.)

   The files /etc/fstab, /etc/mtab and /proc/mounts
       The file /etc/fstab (see fstab(5)), may contain lines describing what devices are  usually
       mounted  where,  using  which  options.   The default location of the fstab(5) file can be
       overridden with the --fstab path command-line option (see below for more details).

       The command

              mount -a [-t type] [-O optlist]

       (usually given in a bootscript) causes all filesystems mentioned in fstab (of  the  proper
       type  and/or  having  or not having the proper options) to be mounted as indicated, except
       for those whose line contains the noauto keyword.  Adding the -F option  will  make  mount
       fork, so that the filesystems are mounted simultaneously.

       When  mounting a filesystem mentioned in fstab or mtab, it suffices to specify on the com-
       mand line only the device, or only the mount point.

       The programs mount and  umount  traditionally  maintained  a  list  of  currently  mounted
       filesystems in the file /etc/mtab.  This real mtab file is still supported, but on current
       Linux systems it is better to make it a symlink to /proc/mounts instead, because a regular
       mtab  file  maintained  in  userspace cannot reliably work with namespaces, containers and
       other advanced Linux features.

       If no arguments are given to mount, the list of mounted filesystems is printed.

       If you want to override mount options from /etc/fstab you have to use the -o option:

              mount device|dir -o options

       and then the mount options from the command line will be appended to the list  of  options
       from /etc/fstab.  The usual behavior is that the last option wins if there are conflicting
       ones.

       The mount program does not read the /etc/fstab file if both device (or LABEL, UUID, PARTU-
       UID or PARTLABEL) and dir are specified.  For example, to mount device foo at /dir:

              mount /dev/foo /dir

   Non-superuser mounts
       Normally, only the superuser can mount filesystems.  However, when fstab contains the user
       option on a line, anybody can mount the corresponding filesystem.

       Thus, given a line

              /dev/cdrom  /cd  iso9660  ro,user,noauto,unhide

       any user can mount the iso9660 filesystem found on an inserted CDROM using the command:
              mount /cd

       Note that mount is very strict about non-root users and all  paths  specified  on  command
       line  are  verified  before fstab is parsed or a helper program is executed. It's strongly
       recommended to use a valid mountpoint to specify filesystem, otherwise mount may fail. For
       example it's bad idea to use NFS or CIFS source on command line.

       For  more  details,  see fstab(5).  Only the user that mounted a filesystem can unmount it
       again.  If any user should be able to unmount it, then use users instead of  user  in  the
       fstab line.  The owner option is similar to the user option, with the restriction that the
       user must be the owner of the special file.  This may be useful  e.g.  for  /dev/fd  if  a
       login  script  makes  the console user owner of this device.  The group option is similar,
       with the restriction that the user must be member of the group of the special file.

   Bind mounts
       Remount part of the file hierarchy somewhere else.  The call is:

              mount --bind olddir newdir

       or by using this fstab entry:

              /olddir /newdir none bind

       After this call the same contents are accessible in two places.  One can  also  remount  a
       single  file  (on  a  single  file).  It's also possible to use the bind mount to create a
       mountpoint from a regular directory, for example:

              mount --bind foo foo

       The bind mount call attaches only (part of) a single filesystem, not  possible  submounts.
       The entire file hierarchy including submounts is attached a second place by using:

              mount --rbind olddir newdir

       Note that the filesystem mount options will remain the same as those on the original mount
       point.

       mount(8) since v2.27 allows to change the mount options by passing  the  relevant  options
       along with --bind.  For example:

              mount -o bind,ro foo foo

       This  feature  is  not supported by the Linux kernel; it is implemented in userspace by an
       additional mount(2) remounting system call.  This solution is not atomic.

       The alternative (classic) way to create a read-only bind mount is to use the remount oper-
       ation, for example:

              mount --bind olddir newdir
              mount -o remount,bind,ro olddir newdir

       Note  that a read-only bind will create a read-only mountpoint (VFS entry), but the origi-
       nal filesystem superblock will  still  be  writable,  meaning  that  the  olddir  will  be
       writable, but the newdir will be read-only.

       It's  also  possible to change nosuid, nodev, noexec, noatime, nodiratime and relatime VFS
       entry flags by "remount,bind" operation. It's impossible to change  mount  options  recur-
       sively (for example with -o rbind,ro).

       mount(8)  since  v2.31  ignores the bind flag from /etc/fstab on remount operation (if "-o
       remount" specified on command line). This is necessary to fully control mount  options  on
       remount  by  command  line. In the previous versions the bind flag has been always applied
       and it was impossible to re-define mount options without interaction with the bind  seman-
       tic. This mount(8) behavior does not affect situations when "remount,bind" is specified in
       the /etc/fstab file.

   The move operation
       Move a mounted tree to another place (atomically).  The call is:

              mount --move olddir newdir

       This will cause the contents which previously appeared under olddir to now  be  accessible
       under newdir.  The physical location of the files is not changed.  Note that olddir has to
       be a mountpoint.

       Note also that moving a mount residing under a shared mount is  invalid  and  unsupported.
       Use findmnt -o TARGET,PROPAGATION to see the current propagation flags.

   Shared subtree operations
       Since  Linux  2.6.15  it is possible to mark a mount and its submounts as shared, private,
       slave or unbindable.  A shared mount provides the ability to create mirrors of that  mount
       such  that mounts and unmounts within any of the mirrors propagate to the other mirror.  A
       slave mount receives propagation from its master, but not vice  versa.   A  private  mount
       carries  no propagation abilities.  An unbindable mount is a private mount which cannot be
       cloned through a bind operation.  The detailed  semantics  are  documented  in  Documenta-
       tion/filesystems/sharedsubtree.txt file in the kernel source tree.

       Supported operations are:

              mount --make-shared mountpoint
              mount --make-slave mountpoint
              mount --make-private mountpoint
              mount --make-unbindable mountpoint

       The  following commands allow one to recursively change the type of all the mounts under a
       given mountpoint.

              mount --make-rshared mountpoint
              mount --make-rslave mountpoint
              mount --make-rprivate mountpoint
              mount --make-runbindable mountpoint

       mount(8) does not read fstab(5) when a --make-* operation  is  requested.   All  necessary
       information has to be specified on the command line.

       Note that the Linux kernel does not allow to change multiple propagation flags with a sin-
       gle mount(2) system call, and the flags cannot be mixed with other mount options.

       Since util-linux 2.23 the mount command allows to use several propagation  flags  together
       and  also together with other mount operations.  This feature is EXPERIMENTAL.  The propa-
       gation flags are applied by additional mount(2) system  calls  when  the  preceding  mount
       operations  were  successful.   Note  that this use case is not atomic.  It is possible to
       specify the propagation flags in  fstab(5)  as  mount  options  (private,  slave,  shared,
       unbindable, rprivate, rslave, rshared, runbindable).

       For example:

              mount --make-private --make-unbindable /dev/sda1 /foo

       is the same as:

              mount /dev/sda1 /foo
              mount --make-private /foo
              mount --make-unbindable /foo

COMMAND-LINE OPTIONS
       The  full  set  of  mount  options  used  by an invocation of mount is determined by first
       extracting the mount options for the filesystem from the fstab table,  then  applying  any
       options  specified  by  the  -o  argument,  and  finally  applying a -r or -w option, when
       present.

       The command mount does not pass all command-line options to the  /sbin/mount.suffix  mount
       helpers.  The interface between mount and the mount helpers is described below in the sec-
       tion EXTERNAL HELPERS.

       Command-line options available for the mount command are:

       -a, --all
              Mount all filesystems (of the given types) mentioned in  fstab  (except  for  those
              whose  line  contains  the  noauto keyword).  The filesystems are mounted following
              their order in fstab.

              Note that it is a bad practice to use mount -a for fstab checking. The  recommended
              solution is findmnt --verify.

       -B, --bind
              Remount  a  subtree  somewhere  else  (so  that  its contents are available in both
              places).  See above, under Bind mounts.

       -c, --no-canonicalize
              Don't canonicalize paths.  The mount command canonicalizes all paths (from  command
              line  or  fstab) by default.  This option can be used together with the -f flag for
              already canonicalized absolute paths.  The option is  designed  for  mount  helpers
              which  call  mount  -i.   It  is  strongly recommended to not use this command-line
              option for normal mount operations.

              Note that mount(8) does not pass this option to the /sbin/mount.type helpers.

       -F, --fork
              (Used in conjunction with -a.)  Fork off  a  new  incarnation  of  mount  for  each
              device.   This  will do the mounts on different devices or different NFS servers in
              parallel.  This has the advantage that it is faster; also NFS timeouts go in paral-
              lel.   A  disadvantage  is  that the mounts are done in undefined order.  Thus, you
              cannot use this option if you want to mount both /usr and /usr/spool.

       -f, --fake
              Causes everything to be done except for the actual system call; if it's  not  obvi-
              ous,  this ``fakes'' mounting the filesystem.  This option is useful in conjunction
              with the -v flag to determine what the mount command is trying to do.  It can  also
              be  used  to  add entries for devices that were mounted earlier with the -n option.
              The -f option checks for an existing record in /etc/mtab and fails when the  record
              already exists (with a regular non-fake mount, this check is done by the kernel).

       -i, --internal-only
              Don't call the /sbin/mount.filesystem helper even if it exists.

       -L, --label label
              Mount the partition that has the specified label.

       -l, --show-labels
              Add  the  labels  in the mount output.  mount must have permission to read the disk
              device (e.g. be set-user-ID root) for this to work.  One can set such a  label  for
              ext2,  ext3 or ext4 using the e2label(8) utility, or for XFS using xfs_admin(8), or
              for reiserfs using reiserfstune(8).

       -M, --move
              Move a subtree to some other place.  See above, the subsection The move operation.

       -n, --no-mtab
              Mount without writing in /etc/mtab.  This is necessary for example when /etc is  on
              a read-only filesystem.

       -O, --test-opts opts
              Limit  the set of filesystems to which the -a option applies.  In this regard it is
              like the -t option except that -O is useless without -a.  For example, the command:

                     mount -a -O no_netdev

              mounts all filesystems except those which have the option _netdev specified in  the
              options field in the /etc/fstab file.

              It is different from -t in that each option is matched exactly; a leading no at the
              beginning of one option does not negate the rest.

              The -t and -O options are cumulative in effect; that is, the command

                     mount -a -t ext2 -O _netdev

              mounts all ext2 filesystems with the _netdev option, not all filesystems  that  are
              either ext2 or have the _netdev option specified.

       -o, --options opts
              Use the specified mount options.  The opts argument is a comma-separated list.  For
              example:

                     mount LABEL=mydisk -o noatime,nodev,nosuid

              For more details, see the FILESYSTEM-INDEPENDENT MOUNT OPTIONS and  FILESYSTEM-SPE-
              CIFIC MOUNT OPTIONS sections.

       -R, --rbind
              Remount  a  subtree and all possible submounts somewhere else (so that its contents
              are available in both places).  See above, the subsection Bind mounts.

       -r, --read-only
              Mount the filesystem read-only.  A synonym is -o ro.

              Note that, depending on the filesystem type, state and kernel behavior, the  system
              may  still write to the device.  For example, ext3 and ext4 will replay the journal
              if the filesystem is dirty.  To prevent this kind of write access, you may want  to
              mount  an ext3 or ext4 filesystem with the ro,noload mount options or set the block
              device itself to read-only mode, see the blockdev(8) command.

       -s     Tolerate sloppy mount options rather than failing.  This will ignore mount  options
              not supported by a filesystem type.  Not all filesystems support this option.  Cur-
              rently it's supported by the mount.nfs mount helper only.

       --source device
              If only one argument for the mount command is given  then  the  argument  might  be
              interpreted  as  target  (mountpoint)  or  source  (device).  This option allows to
              explicitly define that the argument is the mount source.

       --target directory
              If only one argument for the mount command is given  then  the  argument  might  be
              interpreted  as  target  (mountpoint)  or  source  (device).  This option allows to
              explicitly define that the argument is the mount target.

       -T, --fstab path
              Specifies an alternative fstab file.  If path is a directory then the files in  the
              directory  are  sorted  by  strverscmp(3);  files that start with "." or without an
              .fstab extension are ignored.  The option can be specified more  than  once.   This
              option is mostly designed for initramfs or chroot scripts where additional configu-
              ration is specified beyond standard system configuration.

              Note that mount(8) does  not  pass  the  option  --fstab  to  the  /sbin/mount.type
              helpers,  meaning  that  the  alternative  fstab  files  will  be invisible for the
              helpers.  This is no problem for normal mounts, but user (non-root)  mounts  always
              require fstab to verify the user's rights.

       -t, --types fstype
              The  argument  following  the  -t  is  used  to  indicate the filesystem type.  The
              filesystem types which are currently supported depend on the running  kernel.   See
              /proc/filesystems and /lib/modules/$(uname -r)/kernel/fs for a complete list of the
              filesystems.  The most common are ext2, ext3, ext4, xfs, btrfs, vfat, sysfs,  proc,
              nfs and cifs.

              The  programs mount and umount support filesystem subtypes.  The subtype is defined
              by a '.subtype' suffix.  For example  'fuse.sshfs'.  It's recommended to  use  sub-
              type  notation  rather  than  add  any  prefix  to  the  mount  source (for example
              'sshfs#example.com' is deprecated).

              If no -t option is given, or if the auto type is specified, mount will try to guess
              the  desired  type.  Mount uses the blkid library for guessing the filesystem type;
              if that does not turn up anything that looks familiar, mount will try to  read  the
              file  /etc/filesystems,  or, if that does not exist, /proc/filesystems.  All of the
              filesystem types listed there will be tried, except  for  those  that  are  labeled
              "nodev"  (e.g.  devpts,  proc  and nfs).  If /etc/filesystems ends in a line with a
              single *, mount will read /proc/filesystems afterwards.  While trying, all filesys-
              tem types will be mounted with the mount option silent.

              The   auto  type  may  be  useful  for  user-mounted  floppies.   Creating  a  file
              /etc/filesystems can be useful to change the probe order (e.g., to try vfat  before
              msdos or ext3 before ext2) or if you use a kernel module autoloader.

              More  than  one  type  may be specified in a comma-separated list, for option -t as
              well as in an /etc/fstab entry.  The list of filesystem types for option -t can  be
              prefixed  with  no  to  specify  the  filesystem types on which no action should be
              taken.  The prefix no has no effect when specified in an /etc/fstab entry.

              The prefix no can be meaningful with the -a option.  For example, the command

                     mount -a -t nomsdos,smbfs

              mounts all filesystems except those of type msdos and smbfs.

              For most types all the mount program has to do is issue a  simple  mount(2)  system
              call,  and  no  detailed  knowledge  of the filesystem type is required.  For a few
              types however (like nfs, nfs4, cifs, smbfs, ncpfs) an ad  hoc  code  is  necessary.
              The  nfs,  nfs4,  cifs, smbfs, and ncpfs filesystems have a separate mount program.
              In order to make it possible to treat all types in a uniform way, mount  will  exe-
              cute  the  program  /sbin/mount.type  (if  that exists) when called with type type.
              Since different versions of the smbmount program  have  different  calling  conven-
              tions,  /sbin/mount.smbfs  may  have  to be a shell script that sets up the desired
              call.

       -U, --uuid uuid
              Mount the partition that has the specified uuid.

       -v, --verbose
              Verbose mode.

       -w, --rw, --read-write
              Mount the filesystem read/write. The read-write is kernel default.  A synonym is -o
              rw.

              Note  that  specify  -w on command line forces mount command to never try read-only
              mount on write-protected devices. The default is  try  read-only  if  the  previous
              mount syscall with read-write flags failed.

       -V, --version
              Display version information and exit.

       -h, --help
              Display help text and exit.

FILESYSTEM-INDEPENDENT MOUNT OPTIONS
       Some of these options are only useful when they appear in the /etc/fstab file.

       Some  of  these  options could be enabled or disabled by default in the system kernel.  To
       check the current setting see the options in /proc/mounts.   Note  that  filesystems  also
       have  per-filesystem specific default mount options (see for example tune2fs -l output for
       extN filesystems).

       The following options apply to any  filesystem  that  is  being  mounted  (but  not  every
       filesystem actually honors them -“ e.g., the sync option today has an effect only for ext2,
       ext3, fat, vfat and ufs):

       async  All I/O to the filesystem should  be  done  asynchronously.   (See  also  the  sync
              option.)

       atime  Do  not  use  the noatime feature, so the inode access time is controlled by kernel
              defaults.  See also the descriptions of the relatime and strictatime mount options.

       noatime
              Do not update inode access times on this filesystem (e.g. for faster access on  the
              news  spool to speed up news servers).  This works for all inode types (directories
              too), so it implies nodiratime.

       auto   Can be mounted with the -a option.

       noauto Can only be mounted explicitly (i.e., the -a option will not cause  the  filesystem
              to be mounted).

       context=context, fscontext=context, defcontext=context, and rootcontext=context
              The  context=  option  is  useful  when  mounting  filesystems  that do not support
              extended attributes, such as a floppy or hard disk formatted with VFAT, or  systems
              that  are not normally running under SELinux, such as an ext3 formatted disk from a
              non-SELinux workstation.  You can also use  context=  on  filesystems  you  do  not
              trust,  such  as  a  floppy.   It also helps in compatibility with xattr-supporting
              filesystems on earlier 2.4.<x> kernel versions.  Even where xattrs  are  supported,
              you  can  save time not having to label every file by assigning the entire disk one
              security context.

              A      commonly      used      option      for       removable       media       is
              context="system_u:object_r:removable_t".

              Two other options are fscontext= and defcontext=, both of which are mutually exclu-
              sive of the context option.  This means you can use fscontext and  defcontext  with
              each other, but neither can be used with context.

              The fscontext= option works for all filesystems, regardless of their xattr support.
              The fscontext option sets the overarching filesystem label to a  specific  security
              context.   This  filesystem  label  is  separate  from the individual labels on the
              files.  It represents the entire filesystem for certain kinds of permission checks,
              such  as  during mount or file creation.  Individual file labels are still obtained
              from the xattrs on the files themselves.  The  context  option  actually  sets  the
              aggregate  context that fscontext provides, in addition to supplying the same label
              for individual files.

              You can set the default security context  for  unlabeled  files  using  defcontext=
              option.   This  overrides  the  value  set  for  unlabeled  files in the policy and
              requires a filesystem that supports xattr labeling.

              The rootcontext= option allows you to explicitly label the root inode of a FS being
              mounted before that FS or inode becomes visible to userspace.  This was found to be
              useful for things like stateless linux.

              Note that the kernel rejects any remount request that includes the context  option,
              even when unchanged from the current context.

              Warning:  the context value might contain commas, in which case the value has to be
              properly quoted, otherwise mount(8) will interpret the comma as a separator between
              mount options.  Don't forget that the shell strips off quotes and thus double quot-
              ing is required.  For example:

                     mount -t tmpfs none /mnt -o \
                       'context="system_u:object_r:tmp_t:s0:c127,c456",noexec'

              For more details, see selinux(8).

       defaults
              Use the default options: rw, suid, dev, exec, auto, nouser, and async.

              Note that the real set of all default mount options depends on kernel and  filesys-
              tem type.  See the beginning of this section for more details.

       dev    Interpret character or block special devices on the filesystem.

       nodev  Do not interpret character or block special devices on the file system.

       diratime
              Update  directory  inode  access  times  on  this filesystem.  This is the default.
              (This option is ignored when noatime is set.)

       nodiratime
              Do not update directory inode access times on this  filesystem.   (This  option  is
              implied when noatime is set.)

       dirsync
              All  directory  updates  within  the filesystem should be done synchronously.  This
              affects the following system calls: creat, link,  unlink,  symlink,  mkdir,  rmdir,
              mknod and rename.

       exec   Permit execution of binaries.

       noexec Do not permit direct execution of any binaries on the mounted filesystem.

       group  Allow an ordinary user to mount the filesystem if one of that user's groups matches
              the group of the device.  This option implies the options nosuid and nodev  (unless
              overridden by subsequent options, as in the option line group,dev,suid).

       iversion
              Every time the inode is modified, the i_version field will be incremented.

       noiversion
              Do not increment the i_version inode field.

       mand   Allow mandatory locks on this filesystem.  See fcntl(2).

       nomand Do not allow mandatory locks on this filesystem.

       _netdev
              The  filesystem  resides  on a device that requires network access (used to prevent
              the system from attempting to mount these filesystems until the  network  has  been
              enabled on the system).

       nofail Do not report errors for this device if it does not exist.

       relatime
              Update  inode  access times relative to modify or change time.  Access time is only
              updated if the previous access time was earlier than the current modify  or  change
              time.   (Similar  to  noatime, but it doesn't break mutt or other applications that
              need to know if a file has been read since the last time it was modified.)

              Since Linux 2.6.30, the kernel defaults to the behavior  provided  by  this  option
              (unless  noatime  was  specified), and the strictatime option is required to obtain
              traditional semantics.  In addition, since Linux 2.6.30,  the  file's  last  access
              time is always updated if it is more than 1 day old.

       norelatime
              Do not use the relatime feature.  See also the strictatime mount option.

       strictatime
              Allows  to  explicitly  request full atime updates.  This makes it possible for the
              kernel to default to relatime or noatime but still allow userspace to override  it.
              For more details about the default system mount options see /proc/mounts.

       nostrictatime
              Use the kernel's default behavior for inode access time updates.

       lazytime
              Only update times (atime, mtime, ctime) on the in-memory version of the file inode.

              This  mount  option  significantly  reduces writes to the inode table for workloads
              that perform frequent random writes to preallocated files.

              The on-disk timestamps are updated only when:

              - the inode needs to be updated for some change unrelated to file timestamps

              - the application employs fsync(2), syncfs(2), or sync(2)

              - an undeleted inode is evicted from memory

              - more than 24 hours have passed since the i-node was written to disk.

       nolazytime
              Do not use the lazytime feature.

       suid   Allow set-user-ID or set-group-ID bits to take effect.

       nosuid Do not allow set-user-ID or set-group-ID bits to take effect.

       silent Turn on the silent flag.

       loud   Turn off the silent flag.

       owner  Allow an ordinary user to mount the filesystem if that user is  the  owner  of  the
              device.   This  option  implies  the options nosuid and nodev (unless overridden by
              subsequent options, as in the option line owner,dev,suid).

       remount
              Attempt to remount an already-mounted filesystem.  This is commonly used to  change
              the  mount  flags  for  a  filesystem,  especially  to  make  a readonly filesystem
              writable.  It does not change device or mount point.

              The remount operation together with the bind flag has special semantic. See  above,
              the subsection Bind mounts.

              The  remount  functionality  follows  the standard way the mount command works with
              options from fstab.  This means that mount does not read fstab (or mtab) only  when
              both device and dir are specified.

                  mount -o remount,rw /dev/foo /dir

              After  this  call all old mount options are replaced and arbitrary stuff from fstab
              (or mtab) is ignored, except the loop= option which  is  internally  generated  and
              maintained by the mount command.

                  mount -o remount,rw  /dir

              After  this  call, mount reads fstab and merges these options with the options from
              the command line (-o).  If no mountpoint is found in fstab,  then  a  remount  with
              unspecified source is allowed.

       ro     Mount the filesystem read-only.

       rw     Mount the filesystem read-write.

       sync   All  I/O to the filesystem should be done synchronously.  In the case of media with
              a limited number of write cycles (e.g. some flash drives),  sync  may  cause  life-
              cycle shortening.

       user   Allow  an  ordinary user to mount the filesystem.  The name of the mounting user is
              written to the mtab file (or to the private libmount file in /run/mount on  systems
              without  a  regular  mtab) so that this same user can unmount the filesystem again.
              This option implies the options noexec, nosuid, and  nodev  (unless  overridden  by
              subsequent options, as in the option line user,exec,dev,suid).

       nouser Forbid  an ordinary user to mount the filesystem.  This is the default; it does not
              imply any other options.

       users  Allow any user to mount and to unmount the filesystem, even when some  other  ordi-
              nary  user  mounted  it.  This option implies the options noexec, nosuid, and nodev
              (unless   overridden   by   subsequent   options,   as   in   the    option    line
              users,exec,dev,suid).

       X-*    All options prefixed with "X" are interpreted as comments or as userspace applica-
              tion-specific options.  These options are not stored in the user space  (e.g.  mtab
              file),  nor  sent  to  the mount.type helpers nor to the mount(2) system call.  The
              suggested format is X-appname.option.

       x-*    The same as X-* options, but stored permanently in the user  space.  It  means  the
              options  are  also  available for umount or another operations.  Note that maintain
              mount options in user space is tricky, because it's necessary  use  libmount  based
              tools  and  there  is  no  guarantee that the options will be always available (for
              example after a move mount operation or in unshared namespace).

              Note that before util-linux v2.30 the x-* options have not been maintained by  lib-
              mount  and  stored  in user space (functionality was the same as have X-* now), but
              due to growing number of use-cases (in initrd, systemd etc.) the functionality have
              been extended to keep existing fstab configurations usable without a change.

       X-mount.mkdir[=mode]
              Allow  to  make a target directory (mountpoint).  The optional argument mode speci-
              fies the filesystem access mode used for mkdir(2) in octal notation.   The  default
              mode  is 0755.  This functionality is supported only for root users.  The option is
              also supported as x-mount.mkdir, this notation is deprecated for mount.mkdir  since
              v2.30.

FILESYSTEM-SPECIFIC MOUNT OPTIONS
       The  following  options  apply  only  to certain filesystems.  We sort them by filesystem.
       They all follow the -o flag.

       What options are supported depends a bit on the running kernel.  More info may be found in
       the kernel source subdirectory Documentation/filesystems.

   Mount options for adfs
       uid=value and gid=value
              Set the owner and group of the files in the filesystem (default: uid=gid=0).

       ownmask=value and othmask=value
              Set  the  permission  mask  for  ADFS  'owner' permissions and 'other' permissions,
              respectively (default: 0700 and 0077, respectively).  See also /usr/src/linux/Docu-
              mentation/filesystems/adfs.txt.

   Mount options for affs
       uid=value and gid=value
              Set the owner and group of the root of the filesystem (default: uid=gid=0, but with
              option uid or gid without specified value, the UID and GID of the  current  process
              are taken).

       setuid=value and setgid=value
              Set the owner and group of all files.

       mode=value
              Set  the  mode  of all files to value & 0777 disregarding the original permissions.
              Add search permission to directories that have read permission.  The value is given
              in octal.

       protect
              Do not allow any changes to the protection bits on the filesystem.

       usemp  Set UID and GID of the root of the filesystem to the UID and GID of the mount point
              upon the first sync or umount, and then clear this option.  Strange...

       verbose
              Print an informational message for each successful mount.

       prefix=string
              Prefix used before volume name, when following a link.

       volume=string
              Prefix (of length at most 30) used before '/' when following a symbolic link.

       reserved=value
              (Default: 2.) Number of unused blocks at the start of the device.

       root=value
              Give explicitly the location of the root block.

       bs=value
              Give blocksize.  Allowed values are 512, 1024, 2048, 4096.

       grpquota|noquota|quota|usrquota
              These options are accepted but ignored.  (However, quota  utilities  may  react  to
              such strings in /etc/fstab.)

   Mount options for btrfs
       Btrfs  is  a  copy-on-write  filesystem  for Linux aimed at implementing advanced features
       while focusing on fault tolerance, repair, and easy administration.

       alloc_start=bytes
              Debugging option to force all block allocations above a certain byte  threshold  on
              each  block  device.  The value is specified in bytes, optionally with a K, M, or G
              suffix, case insensitive.  Default is 1MB.

       autodefrag
              Disable/enable auto defragmentation.  Auto  defragmentation  detects  small  random
              writes  into files and queues them up for the defrag process.  Works best for small
              files; not well-suited for large database workloads.

       check_int|check_int_data|check_int_print_mask=value
              These debugging options control the behavior of the integrity  checking  module(the
              BTRFS_FS_CHECK_INTEGRITY config option required).

              check_int  enables  the  integrity  checker  module, which examines all block-write
              requests to ensure on-disk consistency, at a large memory and CPU cost.

              check_int_data includes extent data  in  the  integrity  checks,  and  implies  the
              check_int option.

              check_int_print_mask  takes  a bitmask of BTRFSIC_PRINT_MASK_* values as defined in
              fs/btrfs/check-integrity.c, to control the integrity checker module behavior.

              See comments at the top of fs/btrfs/check-integrity.c for more info.

       commit=seconds
              Set the interval of periodic commit, 30 seconds by default.   Higher  values  defer
              data  being  synced to permanent storage, with obvious consequences when the system
              crashes.  The upper bound is not forced, but a warning is printed if it's more than
              300 seconds (5 minutes).

       compress|compress=type|compress-force|compress-force=type
              Control BTRFS file data compression.  Type may be specified as "zlib" "lzo" or "no"
              (for no compression, used for remounting).  If no type is specified, zlib is  used.
              If  compress-force  is specified, all files will be compressed, whether or not they
              compress well.  If compression is enabled, nodatacow and nodatasum are disabled.

       degraded
              Allow mounts to continue with missing devices.  A read-write mount  may  fail  with
              too many devices missing, for example if a stripe member is completely missing.

       device=devicepath
              Specify  a device during mount so that ioctls on the control device can be avoided.
              Especially useful when trying to mount a multi-device setup as root.  May be speci-
              fied multiple times for multiple devices.

       discard
              Disable/enable the discard mount option.  The discard function issues frequent com-
              mands to let the block device reclaim space freed by the filesystem.  This is  use-
              ful  for  SSD  devices, thinly provisioned LUNs and virtual machine images, but may
              have a significant performance impact.  (The fstrim command is  also  available  to
              initiate batch trims from userspace.)

       enospc_debug
              Disable/enable debugging option to be more verbose in some ENOSPC conditions.

       fatal_errors=action
              Action to take when encountering a fatal error:
                "bug" - BUG() on a fatal error.  This is the default.
                "panic" - panic() on a fatal error.

       flushoncommit
              The flushoncommit mount option forces any data dirtied by a write in a prior trans-
              action to commit as part of the current commit.  This makes the committed  state  a
              fully  consistent  view of the filesystem from the application's perspective (i.e.,
              it includes all completed filesystem operations).  This was previously the behavior
              only when a snapshot is created.

       inode_cache
              Enable free inode number caching.   Defaults to off due to an overflow problem when
              the free space CRCs don't fit inside a single page.

       max_inline=bytes
              Specify the maximum amount of space, in bytes, that can be inlined in a metadata B-
              tree  leaf.   The value is specified in bytes, optionally with a K, M, or G suffix,
              case insensitive.  In practice, this value is limited by the root sector size, with
              some  space  unavailable due to leaf headers.  For a 4k sectorsize, max inline data
              is ~3900 bytes.

       metadata_ratio=value
              Specify that 1 metadata chunk should be allocated after every  value  data  chunks.
              Off by default.

       noacl  Enable/disable  support for Posix Access Control Lists (ACLs).  See the acl(5) man-
              ual page for more information about ACLs.

       nobarrier
              Enable/disable the use of block-layer write barriers.  Write barriers  ensure  that
              certain  IOs  make  it  through the device cache and are on persistent storage.  If
              disabled on a device with a volatile  (non-battery-backed)  write-back  cache,  the
              nobarrier  option  will  lead  to  filesystem corruption on a system crash or power
              loss.

       nodatacow
              Enable/disable data copy-on-write for newly created  files.   This  option  implies
              nodatasum, and disables all compression.

       nodatasum
              Enable/disable data checksumming for newly created files.  This option implies dat-
              acow.

       notreelog
              Enable/disable the tree logging used for fsync and O_SYNC writes.

       recovery
              Enable autorecovery attempts if a bad tree root is found at mount time.   Currently
              this  scans  a list of several previous tree roots and tries to use the first read-
              able.

       rescan_uuid_tree
              Force check and rebuild procedure of the UUID tree.  This should  not  normally  be
              needed.

       skip_balance
              Skip  automatic  resume  of  an  interrupted balance operation after mount.  May be
              resumed with "btrfs balance resume."

       nospace_cache
              Disable freespace cache loading without clearing the cache.

       clear_cache
              Force clearing and rebuilding of the disk space cache if something has gone wrong.

       ssd|nossd|ssd_spread
              Options to control ssd allocation schemes.  By default, BTRFS will enable  or  dis-
              able  ssd allocation heuristics depending on whether a rotational or non-rotational
              disk is in use.  The ssd and nossd options can override this autodetection.

              The ssd_spread mount option attempts to allocate into big chunks of  unused  space,
              and may perform better on low-end ssds.  ssd_spread implies ssd, enabling all other
              ssd heuristics as well.

       subvol=path
              Mount subvolume at path rather than the root subvolume.  The path  is  relative  to
              the top level subvolume.

       subvolid=ID
              Mount  subvolume  specified  by  an ID number rather than the root subvolume.  This
              allows mounting of subvolumes which are not in the root of the mounted  filesystem.
              You can use "btrfs subvolume list" to see subvolume ID numbers.

       subvolrootid=objectid  (deprecated)
              Mount  subvolume specified by objectid rather than the root subvolume.  This allows
              mounting of subvolumes which are not in the root of the  mounted  filesystem.   You
              can use "btrfs subvolume show " to see the object ID for a subvolume.

       thread_pool=number
              The  number of worker threads to allocate.  The default number is equal to the num-
              ber of CPUs + 2, or 8, whichever is smaller.

       user_subvol_rm_allowed
              Allow subvolumes to be deleted by a non-root user.  Use with caution.

   Mount options for cifs
       See the options section  of  the  mount.cifs(8)  man  page  (cifs-utils  package  must  be
       installed).

   Mount options for coherent
       None.

   Mount options for debugfs
       The debugfs filesystem is a pseudo filesystem, traditionally mounted on /sys/kernel/debug.
       As of kernel version 3.4, debugfs has the following options:

       uid=n, gid=n
              Set the owner and group of the mountpoint.

       mode=value
              Sets the mode of the mountpoint.

   Mount options for devpts
       The devpts filesystem is a pseudo filesystem, traditionally mounted on /dev/pts.  In order
       to acquire a pseudo terminal, a process opens /dev/ptmx; the number of the pseudo terminal
       is then made available to the process and the pseudo terminal slave  can  be  accessed  as
       /dev/pts/<number>.

       uid=value and gid=value
              This  sets  the  owner  or the group of newly created PTYs to the specified values.
              When nothing is specified, they will be set to the UID  and  GID  of  the  creating
              process.   For  example,  if there is a tty group with GID 5, then gid=5 will cause
              newly created PTYs to belong to the tty group.

       mode=value
              Set the mode of newly created PTYs to the specified value.  The default is 0600.  A
              value of mode=620 and gid=5 makes "mesg y" the default on newly created PTYs.

       newinstance
              Create a private instance of devpts filesystem, such that indices of ptys allocated
              in this new instance are independent of  indices  created  in  other  instances  of
              devpts.

              All  mounts  of  devpts  without  this newinstance option share the same set of pty
              indices (i.e legacy mode).  Each mount of devpts with the newinstance option has  a
              private set of pty indices.

              This option is mainly used to support containers in the linux kernel.  It is imple-
              mented in linux kernel versions starting with 2.6.29.  Further, this  mount  option
              is valid only if CONFIG_DEVPTS_MULTIPLE_INSTANCES is enabled in the kernel configu-
              ration.

              To use this option effectively, /dev/ptmx must be a symbolic link to pts/ptmx.  See
              Documentation/filesystems/devpts.txt in the linux kernel source tree for details.

       ptmxmode=value

              Set the mode for the new ptmx device node in the devpts filesystem.

              With  the  support for multiple instances of devpts (see newinstance option above),
              each instance has a private ptmx node in the root of the devpts  filesystem  (typi-
              cally /dev/pts/ptmx).

              For  compatibility  with  older versions of the kernel, the default mode of the new
              ptmx node is 0000.  ptmxmode=value specifies a more useful mode for the  ptmx  node
              and is highly recommended when the newinstance option is specified.

              This  option  is  only  implemented  in linux kernel versions starting with 2.6.29.
              Further, this option is valid only if CONFIG_DEVPTS_MULTIPLE_INSTANCES  is  enabled
              in the kernel configuration.

   Mount options for ext2, ext3 and ext4
       See the options section of the ext2(5), ext3(5) or ext4(5) man page (the e2fsprogs package
       must be installed).

   Mount options for fat
       (Note: fat is not a separate filesystem, but a common part of the msdos, umsdos  and  vfat
       filesystems.)

       blocksize={512|1024|2048}
              Set blocksize (default 512).  This option is obsolete.

       uid=value and gid=value
              Set  the  owner  and  group of all files.  (Default: the UID and GID of the current
              process.)

       umask=value
              Set the umask (the bitmask of the permissions that are not present).   The  default
              is the umask of the current process.  The value is given in octal.

       dmask=value
              Set the umask applied to directories only.  The default is the umask of the current
              process.  The value is given in octal.

       fmask=value
              Set the umask applied to regular files only.  The default is the umask of the  cur-
              rent process.  The value is given in octal.

       allow_utime=value
              This option controls the permission check of mtime/atime.

              20     If current process is in group of file's group ID, you can change timestamp.

              2      Other users can change timestamp.

              The  default is set from `dmask' option. (If the directory is writable, utime(2) is
              also allowed.  I.e. ~dmask & 022)

              Normally utime(2) checks current process is owner of the file, or it has CAP_FOWNER
              capability.   But  FAT  filesystem doesn't have UID/GID on disk, so normal check is
              too inflexible.  With this option you can relax it.

       check=value
              Three different levels of pickyness can be chosen:

              r[elaxed]
                     Upper and lower case are accepted and equivalent, long name parts are  trun-
                     cated  (e.g. verylongname.foobar becomes verylong.foo), leading and embedded
                     spaces are accepted in each name part (name and extension).

              n[ormal]
                     Like "relaxed", but many special characters (*,  ?,  <,  spaces,  etc.)  are
                     rejected.  This is the default.

              s[trict]
                     Like  "normal", but names that contain long parts or special characters that
                     are sometimes used on Linux but are not accepted by MS-DOS (+, =, etc.)  are
                     rejected.

       codepage=value
              Sets  the  codepage for converting to shortname characters on FAT and VFAT filesys-
              tems.  By default, codepage 437 is used.

       conv=mode
              This option is obsolete and may fail or being ignored.

       cvf_format=module
              Forces the driver to use the CVF (Compressed Volume File) module cvf_module instead
              of  auto-detection.   If  the  kernel supports kmod, the cvf_format=xxx option also
              controls on-demand CVF module loading.  This option is obsolete.

       cvf_option=option
              Option passed to the CVF module.  This option is obsolete.

       debug  Turn on the debug flag.  A version string and a list of filesystem parameters  will
              be  printed  (these  data are also printed if the parameters appear to be inconsis-
              tent).

       discard
              If set, causes discard/TRIM commands to be issued to the block device  when  blocks
              are freed.  This is useful for SSD devices and sparse/thinly-provisioned LUNs.

       dos1xfloppy
              If  set,  use  a fallback default BIOS Parameter Block configuration, determined by
              backing device size.  These static parameters match defaults assumed by DOS 1.x for
              160 kiB, 180 kiB, 320 kiB, and 360 kiB floppies and floppy images.

       errors={panic|continue|remount-ro}
              Specify FAT behavior on critical errors: panic, continue without doing anything, or
              remount the partition in read-only mode (default behavior).

       fat={12|16|32}
              Specify a 12, 16 or 32 bit fat.  This overrides the automatic  FAT  type  detection
              routine.  Use with caution!

       iocharset=value
              Character  set  to  use  for converting between 8 bit characters and 16 bit Unicode
              characters.  The default is iso8859-1.  Long filenames are stored on disk  in  Uni-
              code format.

       nfs={stale_rw|nostale_ro}
              Enable this only if you want to export the FAT filesystem over NFS.

              stale_rw:  This option maintains an index (cache) of directory inodes which is used
              by the nfs-related code to improve look-ups.   Full  file  operations  (read/write)
              over  NFS are supported but with cache eviction at NFS server, this could result in
              spurious ESTALE errors.

              nostale_ro: This option bases the inode number and file handle on the on-disk loca-
              tion  of  a  file in the FAT directory entry.  This ensures that ESTALE will not be
              returned after a file is evicted from the inode  cache.   However,  it  means  that
              operations  such  as rename, create and unlink could cause file handles that previ-
              ously pointed at one file to point at a different file,  potentially  causing  data
              corruption.  For this reason, this option also mounts the filesystem readonly.

              To  maintain  backward  compatibility,  '-o  nfs'  is  also accepted, defaulting to
              stale_rw.

       tz=UTC This option disables the conversion of timestamps between local time  (as  used  by
              Windows on FAT) and UTC (which Linux uses internally).  This is particularly useful
              when mounting devices (like digital cameras) that are set to UTC in order to  avoid
              the pitfalls of local time.

       time_offset=minutes
              Set  offset for conversion of timestamps from local time used by FAT to UTC.  I.e.,
              minutes will be subtracted from each timestamp to convert it to UTC used internally
              by  Linux.  This is useful when the time zone set in the kernel via settimeofday(2)
              is not the time zone used by the filesystem.  Note that this option still does  not
              provide correct time stamps in all cases in presence of DST - time stamps in a dif-
              ferent DST setting will be off by one hour.

       quiet  Turn on the quiet flag.  Attempts to chown or chmod files  do  not  return  errors,
              although they fail.  Use with caution!

       rodir  FAT  has  the ATTR_RO (read-only) attribute.  On Windows, the ATTR_RO of the direc-
              tory will just be ignored, and is used only by applications as a  flag  (e.g.  it's
              set for the customized folder).

              If  you  want  to  use  ATTR_RO  as read-only flag even for the directory, set this
              option.

       showexec
              If set, the execute permission bits of the file will be allowed only if the  exten-
              sion part of the name is .EXE, .COM, or .BAT.  Not set by default.

       sys_immutable
              If  set,  ATTR_SYS attribute on FAT is handled as IMMUTABLE flag on Linux.  Not set
              by default.

       flush  If set, the filesystem will try to flush to disk more early than normal.   Not  set
              by default.

       usefree
              Use  the "free clusters" value stored on FSINFO.  It'll be used to determine number
              of free clusters without scanning disk.  But it's  not  used  by  default,  because
              recent  Windows  don't update it correctly in some case.  If you are sure the "free
              clusters" on FSINFO is correct, by this option you can avoid scanning disk.

       dots, nodots, dotsOK=[yes|no]
              Various misguided attempts to force Unix or DOS conventions onto a FAT filesystem.

   Mount options for hfs
       creator=cccc, type=cccc
              Set the creator/type values as shown by the MacOS  finder  used  for  creating  new
              files.  Default values: '????'.

       uid=n, gid=n
              Set  the  owner  and  group of all files.  (Default: the UID and GID of the current
              process.)

       dir_umask=n, file_umask=n, umask=n
              Set the umask used for all directories, all regular files, or all files and  direc-
              tories.  Defaults to the umask of the current process.

       session=n
              Select  the CDROM session to mount.  Defaults to leaving that decision to the CDROM
              driver.  This option will fail with anything but a CDROM as underlying device.

       part=n Select partition number n from the device.  Only makes sense for CDROMs.   Defaults
              to not parsing the partition table at all.

       quiet  Don't complain about invalid mount options.

   Mount options for hpfs
       uid=value and gid=value
              Set  the  owner  and  group  of all files. (Default: the UID and GID of the current
              process.)

       umask=value
              Set the umask (the bitmask of the permissions that are not present).   The  default
              is the umask of the current process.  The value is given in octal.

       case={lower|asis}
              Convert all files names to lower case, or leave them.  (Default: case=lower.)

       conv=mode
              This option is obsolete and may fail or being ignored.

       nocheck
              Do not abort mounting when certain consistency checks fail.

   Mount options for iso9660
       ISO  9660  is  a  standard  describing a filesystem structure to be used on CD-ROMs. (This
       filesystem type is also seen on some DVDs.  See also the udf filesystem.)

       Normal iso9660 filenames appear in a 8.3 format (i.e., DOS-like restrictions  on  filename
       length),  and  in  addition  all characters are in upper case.  Also there is no field for
       file ownership, protection, number of links, provision for block/character devices, etc.

       Rock Ridge is an extension to iso9660 that  provides  all  of  these  UNIX-like  features.
       Basically  there are extensions to each directory record that supply all of the additional
       information, and when Rock Ridge is in use, the filesystem  is  indistinguishable  from  a
       normal UNIX filesystem (except that it is read-only, of course).

       norock Disable the use of Rock Ridge extensions, even if available.  Cf. map.

       nojoliet
              Disable the use of Microsoft Joliet extensions, even if available.  Cf. map.

       check={r[elaxed]|s[trict]}
              With  check=relaxed,  a  filename is first converted to lower case before doing the
              lookup.  This is probably only meaningful  together  with  norock  and  map=normal.
              (Default: check=strict.)

       uid=value and gid=value
              Give  all files in the filesystem the indicated user or group id, possibly overrid-
              ing the information found in the Rock Ridge extensions.  (Default: uid=0,gid=0.)

       map={n[ormal]|o[ff]|a[corn]}
              For non-Rock Ridge volumes, normal name translation maps upper to lower case ASCII,
              drops  a  trailing `;1', and converts `;' to `.'.  With map=off no name translation
              is done.  See norock.  (Default: map=normal.)  map=acorn  is  like  map=normal  but
              also apply Acorn extensions if present.

       mode=value
              For  non-Rock Ridge volumes, give all files the indicated mode.  (Default: read and
              execute permission for everybody.)  Octal mode values require a leading 0.

       unhide Also show hidden and associated files.  (If the ordinary files and  the  associated
              or  hidden files have the same filenames, this may make the ordinary files inacces-
              sible.)

       block={512|1024|2048}
              Set the block size to the indicated value.  (Default: block=1024.)

       conv=mode
              This option is obsolete and may fail or being ignored.

       cruft  If the high byte of the file length contains other garbage, set this  mount  option
              to  ignore the high order bits of the file length.  This implies that a file cannot
              be larger than 16 MB.

       session=x
              Select number of session on multisession CD.

       sbsector=xxx
              Session begins from sector xxx.

       The following options are the same as for vfat and specifying them only makes  sense  when
       using discs encoded using Microsoft's Joliet extensions.

       iocharset=value
              Character  set to use for converting 16 bit Unicode characters on CD to 8 bit char-
              acters.  The default is iso8859-1.

       utf8   Convert 16 bit Unicode characters on CD to UTF-8.

   Mount options for jfs
       iocharset=name
              Character set to use for converting from Unicode to ASCII.  The default is to do no
              conversion.    Use  iocharset=utf8  for  UTF8  translations.   This  requires  CON-
              FIG_NLS_UTF8 to be set in the kernel .config file.

       resize=value
              Resize the volume to value blocks.  JFS only supports growing a volume, not shrink-
              ing  it.   This  option  is only valid during a remount, when the volume is mounted
              read-write.  The resize keyword with no value will grow the volume to the full size
              of the partition.

       nointegrity
              Do not write to the journal.  The primary use of this option is to allow for higher
              performance when restoring a volume from backup media.  The integrity of the volume
              is not guaranteed if the system abnormally ends.

       integrity
              Default.   Commit  metadata  changes  to the journal.  Use this option to remount a
              volume where the nointegrity option was previously specified in  order  to  restore
              normal behavior.

       errors={continue|remount-ro|panic}
              Define  the  behavior when an error is encountered.  (Either ignore errors and just
              mark the filesystem erroneous and continue, or remount the filesystem read-only, or
              panic and halt the system.)

       noquota|quota|usrquota|grpquota
              These options are accepted but ignored.

   Mount options for minix
       None.

   Mount options for msdos
       See  mount  options for fat.  If the msdos filesystem detects an inconsistency, it reports
       an error and sets the file system read-only.  The filesystem can be made writable again by
       remounting it.

   Mount options for ncpfs
       Just   like   nfs,   the   ncpfs  implementation  expects  a  binary  argument  (a  struct
       ncp_mount_data) to the mount system call.  This argument is constructed by ncpmount(8) and
       the current version of mount (2.12) does not know anything about ncpfs.

   Mount options for nfs and nfs4
       See the options section of the nfs(5) man page (the nfs-utils package must be installed).

       The nfs and nfs4 implementation expects a binary argument (a struct nfs_mount_data) to the
       mount system call.  This argument is constructed by mount.nfs(8) and the  current  version
       of mount (2.13) does not know anything about nfs and nfs4.

   Mount options for ntfs
       iocharset=name
              Character set to use when returning file names.  Unlike VFAT, NTFS suppresses names
              that contain nonconvertible characters.  Deprecated.

       nls=name
              New name for the option earlier called iocharset.

       utf8   Use UTF-8 for converting file names.

       uni_xlate={0|1|2}
              For 0 (or `no' or `false'), do not use escape sequences for unknown Unicode charac-
              ters.   For  1  (or  `yes'  or `true') or 2, use vfat-style 4-byte escape sequences
              starting with ":".  Here 2 give a little-endian encoding and 1 a byteswapped bigen-
              dian encoding.

       posix=[0|1]
              If  enabled  (posix=1),  the filesystem distinguishes between upper and lower case.
              The 8.3 alias names are presented as hard links instead of being suppressed.   This
              option is obsolete.

       uid=value, gid=value and umask=value
              Set  the file permission on the filesystem.  The umask value is given in octal.  By
              default, the files are owned by root and not readable by somebody else.

   Mount options for overlay
       Since Linux 3.18 the overlay pseudo filesystem implements a union mount for other filesys-
       tems.

       An  overlay filesystem combines two filesystems - an upper filesystem and a lower filesys-
       tem.  When a name exists in both filesystems, the object in the upper filesystem is  visi-
       ble  while the object in the lower filesystem is either hidden or, in the case of directo-
       ries, merged with the upper object.

       The lower filesystem can be any filesystem supported by Linux and  does  not  need  to  be
       writable.   The lower filesystem can even be another overlayfs.  The upper filesystem will
       normally be writable and if it is it must  support  the  creation  of  trusted.*  extended
       attributes, and must provide a valid d_type in readdir responses, so NFS is not suitable.

       A read-only overlay of two read-only filesystems may use any filesystem type.  The options
       lowerdir and upperdir are combined into a merged directory by using:

              mount -t overlay  overlay  \
                -olowerdir=/lower,upperdir=/upper,workdir=/work  /merged

       lowerdir=directory
              Any filesystem, does not need to be on a writable filesystem.

       upperdir=directory
              The upperdir is normally on a writable filesystem.

       workdir=directory
              The workdir needs to be an empty directory on the same filesystem as upperdir.

   Mount options for proc
       uid=value and gid=value
              These options are recognized, but have no effect as far as I can see.

   Mount options for ramfs
       Ramfs is a memory based filesystem.  Mount it and you have it.  Unmount it and it is gone.
       There are no mount options.

   Mount options for reiserfs
       Reiserfs is a journaling filesystem.

       conv   Instructs  version  3.6  reiserfs software to mount a version 3.5 filesystem, using
              the 3.6 format for newly created objects.  This filesystem will no longer  be  com-
              patible with reiserfs 3.5 tools.

       hash={rupasov|tea|r5|detect}
              Choose which hash function reiserfs will use to find files within directories.

              rupasov
                     A  hash  invented  by  Yury Yu. Rupasov.  It is fast and preserves locality,
                     mapping lexicographically close file  names  to  close  hash  values.   This
                     option  should  not  be used, as it causes a high probability of hash colli-
                     sions.

              tea    A Davis-Meyer function implemented by Jeremy  Fitzhardinge.   It  uses  hash
                     permuting  bits  in  the  name.  It gets high randomness and, therefore, low
                     probability of hash collisions at some CPU cost.  This may be used if EHASH-
                     COLLISION errors are experienced with the r5 hash.

              r5     A  modified  version  of the rupasov hash.  It is used by default and is the
                     best choice unless the filesystem has huge directories and unusual file-name
                     patterns.

              detect Instructs  mount  to  detect  which hash function is in use by examining the
                     filesystem being mounted, and to write this information  into  the  reiserfs
                     superblock.   This  is  only  useful  on  the  first  mount of an old format
                     filesystem.

       hashed_relocation
              Tunes the block allocator.  This may provide performance improvements in some situ-
              ations.

       no_unhashed_relocation
              Tunes the block allocator.  This may provide performance improvements in some situ-
              ations.

       noborder
              Disable the border allocator algorithm invented by Yury Yu. Rupasov.  This may pro-
              vide performance improvements in some situations.

       nolog  Disable journaling.  This will provide slight performance improvements in some sit-
              uations at the cost of losing reiserfs's fast recovery  from  crashes.   Even  with
              this  option turned on, reiserfs still performs all journaling operations, save for
              actual writes into its journaling area.  Implementation  of  nolog  is  a  work  in
              progress.

       notail By  default,  reiserfs  stores small files and `file tails' directly into its tree.
              This confuses some utilities such as LILO(8).  This option is used to disable pack-
              ing of files into the tree.

       replayonly
              Replay  the  transactions  which  are in the journal, but do not actually mount the
              filesystem.  Mainly used by reiserfsck.

       resize=number
              A remount option which permits online expansion of reiserfs partitions.   Instructs
              reiserfs  to assume that the device has number blocks.  This option is designed for
              use with devices which are under logical volume management (LVM).  There is a  spe-
              cial  resizer utility which can be obtained from ftp://ftp.namesys.com/pub/reiserf-
              sprogs.

       user_xattr
              Enable Extended User Attributes.  See the attr(5) manual page.

       acl    Enable POSIX Access Control Lists.  See the acl(5) manual page.

       barrier=none / barrier=flush
              This disables / enables the use of write barriers in  the  journaling  code.   bar-
              rier=none  disables,  barrier=flush  enables  (default).   This also requires an IO
              stack which can support barriers, and if reiserfs gets an error on a barrier write,
              it  will  disable barriers again with a warning.  Write barriers enforce proper on-
              disk ordering of journal commits, making volatile disk write caches safe to use, at
              some  performance penalty.  If your disks are battery-backed in one way or another,
              disabling barriers may safely improve performance.

   Mount options for romfs
       None.

   Mount options for squashfs
       None.

   Mount options for smbfs
       Just  like  nfs,  the  smbfs  implementation  expects  a   binary   argument   (a   struct
       smb_mount_data) to the mount system call.  This argument is constructed by smbmount(8) and
       the current version of mount (2.12) does not know anything about smbfs.

   Mount options for sysv
       None.

   Mount options for tmpfs
       size=nbytes
              Override default maximum size of the filesystem.  The size is given in  bytes,  and
              rounded up to entire pages.  The default is half of the memory.  The size parameter
              also accepts a suffix % to limit this tmpfs instance to  that  percentage  of  your
              physical  RAM:  the  default,  when  neither  size  nor  nr_blocks is specified, is
              size=50%

       nr_blocks=
              The same as size, but in blocks of PAGE_CACHE_SIZE

       nr_inodes=
              The maximum number of inodes for this instance.  The default is half of the  number
              of your physical RAM pages, or (on a machine with highmem) the number of lowmem RAM
              pages, whichever is the lower.

       The tmpfs mount options for sizing (size, nr_blocks, and nr_inodes) accept a suffix  k,  m
       or  g  for  Ki, Mi, Gi (binary kilo (kibi), binary mega (mebi) and binary giga (gibi)) and
       can be changed on remount.

       mode=  Set initial permissions of the root directory.

       uid=   The user id.

       gid=   The group id.

       mpol=[default|prefer:Node|bind:NodeList|interleave|interleave:NodeList]
              Set the NUMA memory allocation policy for all files in that instance (if the kernel
              CONFIG_NUMA  is  enabled)  -“ which can be adjusted on the fly via 'mount -o remount
              ...'

              default
                     prefers to allocate memory from the local node

              prefer:Node
                     prefers to allocate memory from the given Node

              bind:NodeList
                     allocates memory only from nodes in NodeList

              interleave
                     prefers to allocate from each node in turn

              interleave:NodeList
                     allocates from each node of NodeList in turn.

              The NodeList format is a comma-separated list of  decimal  numbers  and  ranges,  a
              range  being two "hyphen-minus"-separated decimal numbers, the smallest and largest
              node numbers in the range.  For example, mpol=bind:0-“3,5,7,9-“15

              Note that trying to mount a tmpfs with an mpol option will fail if the running ker-
              nel  does not support NUMA; and will fail if its nodelist specifies a node which is
              not online.  If your system relies on that tmpfs being mounted, but  from  time  to
              time  runs a kernel built without NUMA capability (perhaps a safe recovery kernel),
              or with fewer nodes online, then it is advisable to omit the mpol option from auto-
              matic  mount  options.  It can be added later, when the tmpfs is already mounted on
              MountPoint, by 'mount -o remount,mpol=Policy:NodeList MountPoint'.

   Mount options for ubifs
       UBIFS is a flash filesystem which works on top of UBI volumes.  Note  that  atime  is  not
       supported and is always turned off.

       The device name may be specified as
              ubiX_Y UBI device number X, volume number Y

              ubiY   UBI device number 0, volume number Y

              ubiX:NAME
                     UBI device number X, volume with name NAME

              ubi:NAME
                     UBI device number 0, volume with name NAME
       Alternative !  separator may be used instead of :.

       The following mount options are available:

       bulk_read
              Enable  bulk-read.   VFS read-ahead is disabled because it slows down the file sys-
              tem.  Bulk-Read is an internal optimization.  Some flashes may read faster  if  the
              data  are  read at one go, rather than at several read requests.  For example, One-
              NAND can do "read-while-load" if it reads more than one NAND page.

       no_bulk_read
              Do not bulk-read.  This is the default.

       chk_data_crc
              Check data CRC-32 checksums.  This is the default.

       no_chk_data_crc.
              Do not check data CRC-32 checksums.  With this  option,  the  filesystem  does  not
              check  CRC-32  checksum  for  data,  but it does check it for the internal indexing
              information.  This option only affects reading, not writing.  CRC-32 is always cal-
              culated when writing the data.

       compr={none|lzo|zlib}
              Select  the  default  compressor  which  is used when new files are written.  It is
              still possible to read compressed files if mounted with the none option.

   Mount options for udf
       udf is the "Universal Disk Format" filesystem defined by the  Optical  Storage  Technology
       Association, and is often used for DVD-ROM.  See also iso9660.

       gid=   Set the default group.

       umask= Set the default umask.  The value is given in octal.

       uid=   Set the default user.

       unhide Show otherwise hidden files.

       undelete
              Show deleted files in lists.

       nostrict
              Unset strict conformance.

       iocharset
              Set the NLS character set.

       bs=    Set the block size. (May not work unless 2048.)

       novrs  Skip volume sequence recognition.

       session=
              Set the CDROM session counting from 0.  Default: last session.

       anchor=
              Override standard anchor location.  Default: 256.

       volume=
              Override the VolumeDesc location. (unused)

       partition=
              Override the PartitionDesc location. (unused)

       lastblock=
              Set the last block of the filesystem.

       fileset=
              Override the fileset block location. (unused)

       rootdir=
              Override the root directory location. (unused)

   Mount options for ufs
       ufstype=value
              UFS  is  a  filesystem widely used in different operating systems.  The problem are
              differences among implementations.  Features of some  implementations  are  undocu-
              mented,  so  its  hard  to recognize the type of ufs automatically.  That's why the
              user must specify the type of ufs by mount option.  Possible values are:

              old    Old format of ufs, this is the default, read only.  (Don't  forget  to  give
                     the -r option.)

              44bsd  For filesystems created by a BSD-like system (NetBSD, FreeBSD, OpenBSD).

              ufs2   Used in FreeBSD 5.x supported as read-write.

              5xbsd  Synonym for ufs2.

              sun    For filesystems created by SunOS or Solaris on Sparc.

              sunx86 For filesystems created by Solaris on x86.

              hp     For filesystems created by HP-UX, read-only.

              nextstep
                     For filesystems created by NeXTStep (on NeXT station) (currently read only).

              nextstep-cd
                     For NextStep CDROMs (block_size == 2048), read-only.

              openstep
                     For  filesystems  created  by  OpenStep  (currently  read  only).   The same
                     filesystem type is also used by Mac OS X.

       onerror=value
              Set behavior on error:

              panic  If an error is encountered, cause a kernel panic.

              [lock|umount|repair]
                     These mount options don't do anything at present; when an error  is  encoun-
                     tered only a console message is printed.

   Mount options for umsdos
       See mount options for msdos.  The dotsOK option is explicitly killed by umsdos.

   Mount options for vfat
       First  of  all, the mount options for fat are recognized.  The dotsOK option is explicitly
       killed by vfat.  Furthermore, there are

       uni_xlate
              Translate unhandled Unicode characters to special escaped sequences.  This lets you
              backup and restore filenames that are created with any Unicode characters.  Without
              this option, a '?' is used when no translation is possible.  The  escape  character
              is ':' because it is otherwise invalid on the vfat filesystem.  The escape sequence
              that gets used, where u is the Unicode character, is: ':', (u &  0x3f),  ((u>>6)  &
              0x3f), (u>>12).

       posix  Allow two files with names that only differ in case.  This option is obsolete.

       nonumtail
              First try to make a short name without sequence number, before trying name~num.ext.

       utf8   UTF8  is the filesystem safe 8-bit encoding of Unicode that is used by the console.
              It can be enabled for the filesystem with this  option  or  disabled  with  utf8=0,
              utf8=no or utf8=false.  If `uni_xlate' gets set, UTF8 gets disabled.

       shortname=mode
              Defines the behavior for creation and display of filenames which fit into 8.3 char-
              acters.  If a long name for a file exists, it will always be the preferred one  for
              display.  There are four modes:

              lower  Force  the short name to lower case upon display; store a long name when the
                     short name is not all upper case.

              win95  Force the short name to upper case upon display; store a long name when  the
                     short name is not all upper case.

              winnt  Display  the  short name as is; store a long name when the short name is not
                     all lower case or all upper case.

              mixed  Display the short name as is; store a long name when the short name  is  not
                     all upper case.  This mode is the default since Linux 2.6.32.

   Mount options for usbfs
       devuid=uid and devgid=gid and devmode=mode
              Set  the  owner  and  group  and  mode  of the device files in the usbfs filesystem
              (default: uid=gid=0, mode=0644).  The mode is given in octal.

       busuid=uid and busgid=gid and busmode=mode
              Set the owner and group and mode of the bus directories  in  the  usbfs  filesystem
              (default: uid=gid=0, mode=0555).  The mode is given in octal.

       listuid=uid and listgid=gid and listmode=mode
              Set  the  owner  and  group  and  mode  of  the  file  devices (default: uid=gid=0,
              mode=0444).  The mode is given in octal.

   Mount options for xenix
       None.

   Mount options for xfs
       See the options section of the xfs(5) man page (the xfsprogs package must be installed).

THE LOOP DEVICE
       One further possible type is a mount via the loop device.  For example, the command

              mount /tmp/disk.img /mnt -t vfat -o loop=/dev/loop3

       will set up the loop device /dev/loop3 to correspond to the file /tmp/disk.img,  and  then
       mount this device on /mnt.

       If  no  explicit  loop  device  is mentioned (but just an option `-o loop' is given), then
       mount will try to find some unused loop device and use that, for example

              mount /tmp/disk.img /mnt -o loop

       The mount command automatically creates a loop device from a regular file if a  filesystem
       type is not specified or the filesystem is known for libblkid, for example:

              mount /tmp/disk.img /mnt

              mount -t ext3 /tmp/disk.img /mnt

       This  type of mount knows about three options, namely loop, offset and sizelimit, that are
       really options to losetup(8).  (These options can be used in addition to those specific to
       the filesystem type.)

       Since  Linux  2.6.25  auto-destruction of loop devices is supported, meaning that any loop
       device allocated by mount will be freed by umount independently of /etc/mtab.

       You can also free a loop device by hand, using losetup -d or umount -d.

       Since util-linux v2.29 mount command re-uses the loop device rather than initialize a  new
       device  if the same backing file is already used for some loop device with the same offset
       and sizelimit. This is necessary to avoid a filesystem corruption.

RETURN CODES
       mount has the following return codes (the bits can be ORed):

       0      success

       1      incorrect invocation or permissions

       2      system error (out of memory, cannot fork, no more loop devices)

       4      internal mount bug

       8      user interrupt

       16     problems writing or locking /etc/mtab

       32     mount failure

       64     some mount succeeded

       The command mount -a returns 0 (all succeeded), 32 (all failed), or 64 (some failed,  some
       succeeded).

EXTERNAL HELPERS
       The syntax of external mount helpers is:

           /sbin/mount.suffix spec dir [-sfnv] [-o options] [-t type.subtype]

       where  the  suffix  is the filesystem type and the -sfnvo options have the same meaning as
       the normal mount options.  The -t option is used for  filesystems  with  subtypes  support
       (for example /sbin/mount.fuse -t fuse.sshfs).

       The  command mount does not pass the mount options unbindable, runbindable, private, rpri-
       vate, slave, rslave, shared, rshared, auto, noauto, comment, x-*, loop, offset  and  size-
       limit to the mount.<suffix> helpers.  All other options are used in a comma-separated list
       as argument to the -o option.

FILES
       /etc/fstab        filesystem table

       /etc/mtab         table of mounted filesystems

       /etc/mtab~        lock file

       /etc/mtab.tmp     temporary file

       /etc/filesystems  a list of filesystem types to try

ENVIRONMENT
       LIBMOUNT_FSTAB=<path>
              overrides the default location of the fstab file (ignored for suid)

       LIBMOUNT_MTAB=<path>
              overrides the default location of the mtab file (ignored for suid)

       LIBMOUNT_DEBUG=all
              enables libmount debug output

       LIBBLKID_DEBUG=all
              enables libblkid debug output

       LOOPDEV_DEBUG=all
              enables loop device setup debug output

SEE ALSO
       mount(2), umount(2), umount(8), fstab(5), nfs(5), xfs(5), e2label(8), findmnt(8), los-
       etup(8), mke2fs(8), mountd(8), nfsd(8), swapon(8), tune2fs(8), xfs_admin(8)

BUGS
       It is possible for a corrupted filesystem to cause a crash.

       Some  Linux filesystems don't support -o sync nor -o dirsync (the ext2, ext3, fat and vfat
       filesystems do support synchronous updates (a la BSD) when mounted with the sync option).

       The -o remount may not be able to change mount parameters (all ext2fs-specific parameters,
       except  sb,  are changeable with a remount, for example, but you can't change gid or umask
       for the fatfs).

       It is possible that the files /etc/mtab and /proc/mounts don't match  on  systems  with  a
       regular  mtab  file.   The  first file is based only on the mount command options, but the
       content of the second file also depends on the kernel  and  others  settings  (e.g.  on  a
       remote  NFS server -- in certain cases the mount command may report unreliable information
       about an NFS mount point and the /proc/mounts file usually contains more reliable informa-
       tion.)  This is another reason to replace the mtab file with a symlink to the /proc/mounts
       file.

       Checking files on NFS filesystems referenced by file descriptors (i.e. the fcntl and ioctl
       families  of  functions) may lead to inconsistent results due to the lack of a consistency
       check in the kernel even if noac is used.

       The loop option with the offset or sizelimit options used may fail when using  older  ker-
       nels if the mount command can't confirm that the size of the block device has been config-
       ured as requested.  This situation can be worked around by using the losetup command manu-
       ally before calling mount with the configured loop device.

HISTORY
       A mount command existed in Version 5 AT&T UNIX.

AUTHORS
       Karel Zak <kzak@redhat.com>

AVAILABILITY
       The mount command is part of the util-linux package and is available from https://www.ker-
       nel.org/pub/linux/utils/util-linux/.

util-linux                                 August 2015                                   MOUNT(8)

Man(1) output converted with man2html