next up previous
Next: MHT Viterbi Algorithm for Up: MAP Based Estimation of Previous: Joint Estimation of K

Marginalization for Number of Track Estimation

If estimation of K is of primary interest, it can be accomplished without explicit estimation of $\mbox{\boldmath$\tau$ }_n^{i(K)}$ by marginalizing $p\left( K, \mbox{\boldmath$\tau$ }_n^{i(K)} \vert {\cal Z}^n \right)$ over the $\mbox{\boldmath$\tau$ }_n^{i(K)}$. Compared to (8), the resulting estimator,

 \begin{displaymath}
{\hat K} = \arg \; \;
\max_{K} \; \; \left\{
p\left( K \vert...
...ath$\tau$ }_n^{i(K)} \vert
{\cal Z}^n \right) \right\} \; \; ,
\end{displaymath} (15)

can have better performance characteristics, particularly for small number-of-measurement cases.



Rick Perry
2000-03-26