next up previous
Next: Bibliography Up: EM Algorithm for Sequence Channels Previous: Summary and Conclusions

   
Appendix

From Section 4 we have ${\bf h}_k = \alpha {\bf h}_{k-1} + {\bf v}_k$, where ${\bf v}_k$ is Gaussian with mean $\bf d$ and covariance $\bf C$. Therefore $f({\bf h}_k\vert{\bf h}_{k-1})$ is Gaussian with mean ${\bf d} + \alpha {\bf h}_{k-1}$ and covariance $\bf C$. To derive the formulas for ${\bf g}_k$ and ${\bf G}_k$ in this case, we start by examining the forms of $f({\bf h}_k)$and $f({\bf h}_{k-1}\vert{\bf h}_k)$.

Recursively writing ${\bf h}_k$ in terms of ${\bf h}_{k-1}$, ${\bf h}_{k-2}, \ \ldots$, we obtain:

 \begin{displaymath}{\bf h}_k =
\sum_{j=0}^{\infty} \alpha ^j {\bf v}_{k-j} .
\end{displaymath} (20)

Assuming that $\vert\alpha\vert < 1$, the result of the summation in (20) is that $f({\bf h}_k)$ is Gaussian with mean $\frac{\bf d}{1 - \alpha}$and covariance $\frac {\bf C}{1 - \vert\alpha\vert^2}$.

Using Bayes rule, $f({\bf h}_{k-1}\vert{\bf h}_k) =
\frac {f({\bf h}_k\vert{\bf h}_{k-1}) f({\bf h}_{k-1})}
{f({\bf h}_k)}
\doteq e^{- E_{k-1} }$ , with:

$\displaystyle E_{k-1} =
\left( {\bf h}_{k} - {\bf d} - \alpha {\bf h}_{k-1} \ri...
... ^{*T}
{\bf C}^{-1}
\left( {\bf h}_{k} - {\bf d} - \alpha {\bf h}_{k-1} \right)$      
$\displaystyle \ + \left( {\bf h}_{k-1} - \frac{\bf d}{1 - \alpha} \right) ^{*T}...
...a\vert^2 ) {\bf C}^{-1}
\left( {\bf h}_{k-1} - \frac{\bf d}{1 - \alpha} \right)$      
$\displaystyle \ - \left( {\bf h}_{k} - \frac{\bf d}{1 - \alpha} \right) ^{*T}
(...
...a\vert^2 ) {\bf C}^{-1}
\left( {\bf h}_{k} - \frac{\bf d}{1 - \alpha} \right) .$      

Algebraic manipulation yields:
$\displaystyle E_{k-1} =
\left( {\bf h}_{k-1} - \beta {\bf d} - {\alpha}^* {\bf ...
...C}^{-1}
\left( {\bf h}_{k-1} - \beta {\bf d} - {\alpha}^* {\bf h}_{k} \right) ,$      

with $\beta \stackrel{\triangle}{=}
\frac {1 - \alpha^*}
{1 - \alpha}$ . So $f({\bf h}_{k-1}\vert{\bf h}_k)$ is Gaussian with mean $\beta {\bf d} + \alpha^* {\bf h}_k$ and covariance $\bf C$.

Note that $f({\bf H})$ can be written in terms of $f({\bf h}_k)$ for any value of k. (16) shows this for k=1. In general:

 
$\displaystyle f({\bf H})$ = $\displaystyle f({\bf h}_N\vert{\bf h}_{N-1}) \cdots
f({\bf h}_{k+1}\vert{\bf h}_k) f({\bf h}_k)
f({\bf h}_{k-1}\vert{\bf h}_k)$  
    $\displaystyle \cdot ~ f({\bf h}_{k-2}\vert{\bf h}_{k-1}) \cdots
f({\bf h}_1\vert{\bf h}_2)$ (21)

To evaluate $f({\bf h}_k \vert {\bf r,B})$, we can use the above form of $f({\bf H})$ in (16) and integrate over ${\bf h}_i, i=1,\ldots,N; i \ne k$.

Consider two of these integrations, say the integrals over ${\bf h}_1$ and ${\bf h}_2$. By examining the form of this result, we will be able to produce the general result. Showing just the terms involving ${\bf h}_1$, $I_1 =
\int_{{\bf h}_1} e^{- E_1 } d{\bf h}_1$ , with:

E1 = $\displaystyle ({\bf h}_1 - \beta {\bf d} - \alpha^* {\bf h}_2)^{*T}
{\bf C}^{-1}
({\bf h}_1 - \beta {\bf d} - \alpha^* {\bf h}_2)$  
    $\displaystyle + \frac {\vert r_1 - {\bf b}_1^T {\bf h}_1\vert^2 }
{\sigma^2} .$  

E1 can be reduced, dropping constant terms, to:
E1 $\textstyle \doteq$ $\displaystyle ({\bf h}_1 - {\bf\hat{g}}_1)^{*T}
{\bf\hat{G}}_1^{-1}
({\bf h}_1 - {\bf\hat{g}}_1)$  
    $\displaystyle - {\bf\hat{g}}_1^{*T} {\bf\hat{G}}_1^{-1} {\bf\hat{g}}_1
+ \vert\alpha\vert^2 {\bf h}_2^{*T} {\bf C}^{-1} {\bf h}_2$  
    $\displaystyle + \alpha \beta {\bf h}_2^{*T} {\bf C}^{-1} {\bf d}
+ \alpha^* \beta^* {\bf d}^{*T} {\bf C}^{-1} {\bf h}_2 ,$  

where ${\bf\hat{G}}_1$ and ${\bf\hat{g}}_1$ will be defined below. Since the last four terms in E1 are not functions of ${\bf h}_1$, they can be factored out of the integral. And the integral over ${\bf h}_1$ involving the first term from E1produces a constant which can be ignored. Thus, the result is:
 
I1 $\textstyle \doteq$ $\displaystyle e^{
{\bf\hat{g}}_1^{*T} {\bf\hat{G}}_1^{-1} {\bf\hat{g}}_1
- \vert\alpha\vert^2 {\bf h}_2^{*T} {\bf C}^{-1} {\bf h}_2
}$  
    $\displaystyle \cdot ~ e^{
- \alpha \beta {\bf h}_2^{*T} {\bf C}^{-1} {\bf d}
- \alpha^* \beta^* {\bf d}^{*T} {\bf C}^{-1} {\bf h}_2
} ,$ (22)

with:
 
$\displaystyle {\bf\hat{G}}_1$ = $\displaystyle \left[
\frac {{\bf b}_1^* {\bf b}_1^T}
{\sigma^2}
+ {\bf C}^{-1}
\right]^{-1}$  
$\displaystyle {\bf\hat{q}}_1$ = $\displaystyle \frac {r_1 {\bf b}_1^* }
{\sigma^2}+ \beta {\bf C}^{-1} {\bf d}$ (23)
$\displaystyle {\bf\hat{g}}_1$ = $\displaystyle {\bf\hat{G}}_1 ( {\bf\hat{q}}_1
+ \alpha^* {\bf C}^{-1} {\bf h}_2 )$  

Expanding the first term from the exponent in (22), and dropping constant terms:

$\displaystyle {\bf\hat{g}}_1^{*T} {\bf\hat{G}}_1^{-1} {\bf\hat{g}}_1$ = $\displaystyle \left(
{\bf\hat{q}}_1^{*T} + \alpha {\bf h}_2^{*T} {\bf C}^{-1}
\...
...
{\bf\hat{G}}_1
\left(
{\bf\hat{q}}_1 + \alpha^* {\bf C}^{-1} {\bf h}_2
\right)$  
  $\textstyle \doteq$ $\displaystyle \vert\alpha\vert^2 {\bf h}_2^{*T} {\bf C}^{-1} {\bf\hat{G}}_1 {\bf C}^{-1} {\bf h}_2$  
    $\displaystyle + \alpha^* {\bf\hat{q}}_1^{*T} {\bf\hat{G}}_1 {\bf C}^{-1} {\bf h}_2
+ \alpha {\bf h}_2^{*T} {\bf C}^{-1} {\bf\hat{G}}_1 {\bf\hat{q}}_1 .$  

So we now have:
I1 $\textstyle \doteq$ $\displaystyle e^{
\vert\alpha\vert^2 {\bf h}_2^{*T} {\bf C}^{-1} {\bf\hat{G}}_1...
...\bf h}_2
+ \alpha^* {\bf\hat{q}}_1^{*T} {\bf\hat{G}}_1 {\bf C}^{-1} {\bf h}_2 }$  
    $\displaystyle \cdot ~ e^{ \alpha {\bf h}_2^{*T} {\bf C}^{-1} {\bf\hat{G}}_1 {\bf\hat{q}}_1
- \vert\alpha\vert^2 {\bf h}_2^{*T} {\bf C}^{-1} {\bf h}_2 }$  
    $\displaystyle \cdot ~ e^{ - \alpha \beta {\bf h}_2^{*T} {\bf C}^{-1} {\bf d}
- \alpha^* \beta^* {\bf d}^{*T} {\bf C}^{-1} {\bf h}_2
}$  

This result shows how the integral over ${\bf h}_1$ produces terms involving ${\bf h}_2$ which must be included when performing the integral over ${\bf h}_2$. Showing just the terms involving ${\bf h}_2$ for this next integral, $I_2 = \int_{{\bf h}_2} e^{- E_2 } d{\bf h}_2$ , with:

E2 = $\displaystyle ({\bf h}_2 - \beta {\bf d} - \alpha^* {\bf h}_3)^{*T}
{\bf C}^{-1}
({\bf h}_2 - \beta {\bf d} - \alpha^* {\bf h}_3)$  
    $\displaystyle + \frac {\vert r_2 - {\bf b}_2^T {\bf h}_2\vert^2 }
{\sigma^2}
- ...
...\alpha\vert^2 {\bf h}_2^{*T} {\bf C}^{-1} {\bf\hat{G}}_1 {\bf C}^{-1} {\bf h}_2$  
    $\displaystyle - \alpha^* {\bf\hat{q}}_1^{*T} {\bf\hat{G}}_1 {\bf C}^{-1} {\bf h}_2
- \alpha {\bf h}_2^{*T} {\bf C}^{-1} {\bf\hat{G}}_1 {\bf\hat{q}}_1$  
    $\displaystyle + \vert\alpha\vert^2 {\bf h}_2^{*T} {\bf C}^{-1} {\bf h}_2
+ \alpha \beta {\bf h}_2^{*T} {\bf C}^{-1} {\bf d}$  
    $\displaystyle + \alpha^* \beta^* {\bf d}^{*T} {\bf C}^{-1} {\bf h}_2$  

E2 can be reduced, dropping constant terms, to:
 
E2 $\textstyle \doteq$ $\displaystyle ({\bf h}_2 - {\bf\hat{g}}_2)^{*T}
{\bf\hat{G}}_2^{-1}
({\bf h}_2 - {\bf\hat{g}}_2)
- {\bf\hat{g}}_2^{*T} {\bf\hat{G}}_2^{-1} {\bf\hat{g}}_2$  
    $\displaystyle + \vert\alpha\vert^2 {\bf h}_3^{*T} {\bf C}^{-1} {\bf h}_3
+ \alpha \beta {\bf h}_3^{*T} {\bf C}^{-1} {\bf d}$  
    $\displaystyle + \alpha^* \beta^* {\bf d}^{*T} {\bf C}^{-1} {\bf h}_3 ,$ (24)

where ${\bf\hat{G}}_2$ and ${\bf\hat{g}}_2$ will be defined below. Since the last four terms in (24) are not functions of ${\bf h}_2$, they can be factored out of the integral. And the integral over ${\bf h}_2$involving the first term produces a constant which can be ignored. Thus, the result is:
 
I2 $\textstyle \doteq$ $\displaystyle e^{
{\bf\hat{g}}_2^{*T} {\bf\hat{G}}_2^{-1} {\bf\hat{g}}_2
- \vert\alpha\vert^2 {\bf h}_3^{*T} {\bf C}^{-1} {\bf h}_3 }$  
    $\displaystyle \cdot ~ e^{ - \alpha \beta {\bf h}_3^{*T} {\bf C}^{-1} {\bf d}
- \alpha^* \beta^* {\bf d}^{*T} {\bf C}^{-1} {\bf h}_3
}$ (25)

with:
 
$\displaystyle {\bf\hat{G}}_2$ = $\displaystyle \left[
\frac {{\bf b}_2^* {\bf b}_2^T}
{\sigma^2}
+ {\bf C}^{-1}
...
...t(
{\bf C}^{-1} - {\bf C}^{-1} {\bf\hat{G}}_1 {\bf C}^{-1}
\right)
\right]^{-1}$  
$\displaystyle {\bf\hat{q}}_2$ = $\displaystyle \frac {r_2 {\bf b}_2^* }
{\sigma^2}+ (1 - \alpha^*) {\bf C}^{-1} {\bf d}
+ \alpha {\bf C}^{-1} {\bf\hat{G}}_1 {\bf\hat{q}}_1$ (26)
$\displaystyle {\bf\hat{g}}_2$ = $\displaystyle {\bf\hat{G}}_2 ( {\bf\hat{q}}_2
+ \alpha^* {\bf C}^{-1} {\bf h}_3 )$  

From the forms of (22) and (25) we can easily deduce the general form of the result of integrating over ${\bf h}_i$.

(26) indicates the general form of the equations for ${\bf\hat{G}}_i$ and ${\bf\hat{g}}_i$. These equations have more terms than (23) because in deriving (23) there were no previous integration results to incorporate. However, if we define ${\bf\hat{G}}_0 = {\bf C}$ and ${\bf\hat{q}}_0 = \beta {\bf C}^{-1} {\bf d}$, then (23) may also be written in the same form as (26).

The preceding derivations used (21) to integrate (16) over ${\bf h}_1$ and ${\bf h}_2$, and show the recursive forms of the update equations which appear in (19). If we start at the ``other end'' of (21), and integrate over ${\bf h}_N$ first, then ${\bf h}_{N-1}$, etc., we obtain similar recursive equations which appear in (17).

Finally, to produce $f({\bf h}_k\vert{\bf r},{\bf B})$after integrating over ${\bf h}_i, i = 1,\ldots,N, i \ne k$, we have $f({\bf h}_k\vert{\bf r},{\bf B}) \doteq e^{ {-E_k}}$, with:

Ek = $\displaystyle \left( {\bf h}_{k} - \frac{\bf d}{1 - \alpha} \right) ^{*T}
\left...
...rt^2 \right) {\bf C}^{-1}
\left( {\bf h}_{k} - \frac{\bf d}{1 - \alpha} \right)$  
    $\displaystyle + \frac {\vert r_k - {\bf b}_k^T {\bf h}_k\vert^2 }
{\sigma^2}$  
    $\displaystyle + \vert\alpha\vert^2 {\bf h}_k^{*T} {\bf C}^{-1} {\bf h}_k
+ \alp...
...\bf h}_k^{*T} {\bf C}^{-1} {\bf d}
+ \alpha {\bf d}^{*T} {\bf C}^{-1} {\bf h}_k$  
    $\displaystyle - \alpha {\bf q}_{k+1}^{*T} {\bf\hat{G}}_{k+1} {\bf C}^{-1} {\bf h}_k
- \alpha^* {\bf h}_k^{*T} {\bf C}^{-1} {\bf\hat{G}}_{k+1} {\bf q}_{k+1}$  
    $\displaystyle - \vert\alpha\vert^2 {\bf h}_k^{*T} {\bf C}^{-1} {\bf\hat{G}}_{k+1} {\bf C}^{-1} {\bf h}_k$  
    $\displaystyle + \vert\alpha\vert^2 {\bf h}_k^{*T} {\bf C}^{-1} {\bf h}_k
+ \alpha \beta {\bf h}_k^{*T} {\bf C}^{-1} {\bf d}$  
    $\displaystyle + \alpha^* \beta^* {\bf d}^{*T} {\bf C}^{-1} {\bf h}_k
- \alpha^* {\bf q}_{k-1}^{*T} {\bf\hat{G}}_{k-1} {\bf C}^{-1} {\bf h}_k$  
    $\displaystyle - \alpha {\bf h}_k^{*T} {\bf C}^{-1} {\bf\hat{G}}_{k-1} {\bf q}_{k-1}$  
    $\displaystyle - \vert\alpha\vert^2 {\bf h}_k^{*T} {\bf C}^{-1} {\bf\hat{G}}_{k-1} {\bf C}^{-1} {\bf h}_k$  

where the third through fifth lines above show the cumulative contributions of the integrals over ${\bf h}_i$ for i>k, and the last four lines show the contributions from i<k. Combining terms and dropping constants, this can be written as:
$\displaystyle E_k \doteq
({\bf h}_k - {\bf g}_k)^{*T}{\bf G}_k ({\bf h}_k - {\bf g}_k)$      

indicating that $f({\bf h}_k\vert{\bf r},{\bf B})$ has a Gaussian distribution, with ${\bf G}_k$ and ${\bf g}_k$ defined in (18).


next up previous
Next: Bibliography Up: EM Algorithm for Sequence Channels Previous: Summary and Conclusions
Rick Perry
2000-03-30