... known1
Estimation of K, using a Viterbi algorithm approach, is discussed in [20].
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... equations2
To simplify the discussion we assume linear state/measurement equations.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... possible3
These assumptions allow for representation of unresolved targets as a combination of detections and missed detections.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... is4
$\left( \begin{array}{c} A \\ B \end{array} \right)$represents the number of combinations of A things taken B at a time.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... used5
Because each state represents all permutations of the corresponding Kmeasurements/missed-events, each path through the trellis represents a number of hypothesized track sets.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Rick Perry
2000-05-06