next up previous
Next: Joint Estimation of K Up: Bayesian Track Estimation Previous: Bayesian Track Estimation

Estimation of K Tracks

Using a Bayesian formulation which incorporates prior track set probabilities, at time n we have the following optimization problem for the selection from $\mbox{\boldmath$\tau$ }_n^i ; i=1,2, \cdots I_n^{'}$

 \begin{displaymath}
\max_{ \mbox{\boldmath$\tau$ }_n^i } \; \; \; \; \;
p\left( ...
...$\tau$ }_n^i \right)}
{p \left( {\cal Z}^n \right)} \; \; \; .
\end{displaymath} (7)

$p \left( {\cal Z}^n \right)$ is a normalizing factor which serves to make the possible values of $p\left( \mbox{\boldmath$\tau$ }_n^i \vert {\cal Z}^n \right)$ sum to unity, and can be ignored since it is independent of $\mbox{\boldmath$\tau$ }_n^i$. $p\left( \mbox{\boldmath$\tau$ }_n^i \right)$ is the apriori probability of the set of tracks, and is derived from the known probability of missed detections and the false alarm rate. Letting Jm = Tmi + Fmi, where Tmi is the number of measurement vectors at time m used in the Ktrack set $\mbox{\boldmath$\tau$ }_n^i$ and Fmi is the number of assumed false alarms, we have that

 \begin{displaymath}
p\left( \mbox{\boldmath$\tau$ }_n^i \right) = \prod_{m=1}^{n} \;
P_d^{T_m^i} \; (1-P_d)^{K-T_m^i} \; p( F_m^i ) \; \; ,
\end{displaymath} (8)

where p( Fmi ) is the Poisson distributed probability of Fmi false alarms.

$p\left( {\cal Z}^n \vert \mbox{\boldmath$\tau$ }_n^i \right)$is the joint probability density function of the measurements ${\cal Z}^n$ conditioned on the track set $\mbox{\boldmath$\tau$ }_n^i$. For a given $\mbox{\boldmath$\tau$ }_n^i$, we can partition ${\cal Z}^n$ into the data associated with the tracks, ${\cal Z} ( \mbox{\boldmath$\tau$ }_n^i )$, and data associated with false alarms, $\overline{\cal Z} ( \mbox{\boldmath$\tau$ }_n^i )$. We then have

 \begin{displaymath}
p\left( {\cal Z}^n \vert \mbox{\boldmath$\tau$ }_n^i \right)...
...$ }_n^i ) \vert
\mbox{\boldmath$\tau$ }_n^i \right) \; \; \; ,
\end{displaymath} (9)

where, under the assumption that false alarms are uniformly distributed over the surveillance volume Y,

 \begin{displaymath}
p\left( \overline{\cal Z} ( \mbox{\boldmath$\tau$ }_n^i ) \v...
...) =
\left( \frac{1}{Y} \right)^{\sum_{m=1}^{n} F_m^i} \; \; .
\end{displaymath} (10)

In terms of the Kalman filter generated measurement innovations, for the track measurements,

 \begin{displaymath}
p\left( {\cal Z} ( \mbox{\boldmath$\tau$ }_n^i ) \vert
\mbo...
...d_{p=1}^K \prod_{m=1}^{n} \;
p ( {\bf v}_{m,j_m ( l_p (i) )} )
\end{displaymath} (11)


 \begin{displaymath}
= d_n^i \; \mbox{exp} \left\{ -\frac{1}{2} \sum_{p=1}^K
\su...
...(i) )}^{-1}
{\bf v}_{m,j_m ( l_p (i) )} \right\} \nonumber \\
\end{displaymath}  

where for each track p the product over m does not include any missed detections since as noted earlier measurements and innovations for missed detections don't exist. Keeping this in mind,

 \begin{displaymath}
d_n^i = \prod_{p=1}^{K} \prod_{m=1}^{n}
\frac{1}{{(2 \pi )}^...
...\cdot
\sqrt{\det ({\bf S}_{m,j_m ( l_p (i) )} ) }} \; \; \; .
\end{displaymath} (12)

The Bayesian cost for estimating the best K tracks is described by (8), along with (9), (11), (13) and (14).

To derive an equivalent cost from which a time recursive trellis structure representation can be derived, take the negative natural log of (8), ignoring $p \left( {\cal Z}^n \right)$. For the ith track set, the following equivalent Bayesian optimization problem is obtained:

 \begin{displaymath}
\min_{ \mbox{\boldmath$\tau$ }_n^i } \; \; \; \; \;
\Lambda...
...) = \sum_{m=1}^{n}
\Lambda_m ( \mbox{\boldmath$\tau$ }_n^i )
\end{displaymath} (13)

where the time incremental cost is

 \begin{displaymath}
\Lambda_m ( \mbox{\boldmath$\tau$ }_n^i ) =
\lambda_m ( \mb...
...{p=1}^{K} \lambda_m ( \mbox{\boldmath$\theta$ }_n^{l_p (i)} )
\end{displaymath} (14)

with
 
$\displaystyle \lambda_m ( \mbox{\boldmath$\tau$ }_n^i )$ = $\displaystyle F_m^i \ln (Y) - T_m^i \ln (P_d )$ (15)
  - $\displaystyle (K-T_m^i ) \ln (1-P_d ) - \ln (p(F_m^i )) \; \; ,$  

and the pth track incremental cost at time m is
$\displaystyle \lambda_m ( \mbox{\boldmath$\theta$ }_n^{l_p (i)} )$ = $\displaystyle \frac{1}{2} \ln ( \det ({\bf S}_{m,j_m ( l_p (i) )})) +
\frac{D}{2} \ln (2 \pi )$ (16)
  + $\displaystyle \frac{1}{2}
{\bf v}_{m,j_m ( l_p (i) )}^T {\bf S}_{m,j_m ( l_p (i) )}^{-1}
{\bf v}_{m,j_m ( l_p (i) )} \; .$  

Although from (15), the time recursion

\begin{displaymath}\Lambda^n ( \mbox{\boldmath$\tau$ }_n^i )
= \Lambda^{n-1} (...
...$ }_n^i )
+ \Lambda_n ( \mbox{\boldmath$\tau$ }_n^i ) \; \;
\end{displaymath} (17)

can be formed, to solve this Bayesian problem directly, at time n In' incremental costs must be computed. In the following sections we develop an algorithmic approach which reduces this computational requirement.


next up previous
Next: Joint Estimation of K Up: Bayesian Track Estimation Previous: Bayesian Track Estimation
Rick Perry
1999-03-10