next up previous
Next: Gauss-Markov Signal Amplitudes Up: EM Algorithms for Source Previous: EM Algorithms for Source

Temporally Independent Signal Amplitudes

If the signal amplitude vectors ${\bf s}_k$ are independent over time, then $f({\bf S})$ can be written as:

 \begin{displaymath}f({\bf S}) =
~ \prod_{k=1}^{N} f({\bf s}_k) ,
\end{displaymath} (15)

and $f({\bf S }\vert{\bf X}, \phi )$ becomes:

 \begin{displaymath}f({\bf S}\vert{\bf X}, \phi ) =
~ \prod_{k=1}^{N} f({\bf s}_k\vert{\bf X}, \phi ) \; \; .
\end{displaymath} (16)

From (10) and (3) we have that

 \begin{displaymath}f({\bf s}_k\vert{\bf X}, \phi) \doteq
f({\bf s}_k) ~ e^{ -
\f...
...k -{\bf A} ( \phi ) {\bf s}_k\vert\vert^{2}}
{\sigma^{2}}
} .
\end{displaymath} (17)

For temporally independent Gaussian signal amplitudes, let $f({\bf s}_k)$ be a joint Gaussian distribution with mean ${\bf c}_k$ and covariance ${\bf C}_k$:

 \begin{displaymath}f({\bf s}_k) =
\frac {1}{\pi^N \vert{\bf C}_k\vert}
e^{- ({\b...
... - {\bf c}_k )^{H} {\bf C}_k^{-1} ({\bf s}_k - {\bf c}_k ) } .
\end{displaymath} (18)

In this case (17) specifically becomes
 
$\displaystyle f({\bf s}_k \vert{\bf X}, \theta )$ $\textstyle \doteq$ $\displaystyle e^{- \frac{\vert\vert {\bf x}_k - {\bf A} ( \phi ) {\bf s}_k \ver...
... ~ ~
e^{-
({\bf s}_k -{\bf c}_k )^{H} {\bf C}_k^{-1} ({\bf s}_k - {\bf c}_k )
}$  
  $\textstyle \doteq$ $\displaystyle e^{- ({\bf s}_k - {\bf g}_k )^{H} {\bf G}_k^{-1} ({\bf s}_k - {\bf g}_k)} ,$ (19)

with
  
$\displaystyle {\bf G}_k$ = $\displaystyle \left[\frac {{\bf A}^H ( \phi ) {\bf A} ( \phi )}
{\sigma^2}
+ {\bf C}_k^{-1}
\right]^{-1}$ (20)
$\displaystyle {\bf g}_k$ = $\displaystyle {\bf G}_k \left(
\frac {{\bf A}^H ( \phi ) {\bf x}_k}
{\sigma^2}
+ {\bf C}_k^{-1} {\bf c}_k
\right) \; \; .$ (21)


To initialize $\phi$ in step 1, we could, for example, initialize ${\bf G}_k = {\bf C}_k$ and ${\bf g}_k = {\bf c}_k$, $k = 1 , \ldots , N$.
next up previous
Next: Gauss-Markov Signal Amplitudes Up: EM Algorithms for Source Previous: EM Algorithms for Source
Rick Perry
2000-03-16