next up previous
Next: Deterministic Channel Coefficients Up: EM Algorithms for Sequence Previous: EM and ML Sequence

   
EM Algorithms for Specific Random Channels

Using (3) in (10), (8) becomes:

 \begin{displaymath}Q({\bf A}\vert{\bf B}) \doteq
E[-\vert{\bf r}-{\bf Ah}\vert^2...
...f r}-{\bf Ah}\vert^2 f({\bf h}\vert{\bf r},{\bf B}) d{\bf h} ,
\end{displaymath} (11)

with

 \begin{displaymath}% latex2html id marker 804
f({\bf h}\vert{\bf r},{\bf B}) =
K...
...frac {\vert{\bf r}-{\bf Bh}\vert^2}
{\sigma^2}
}
f({\bf h}) ,
\end{displaymath} (12)

where % latex2html id marker 988
$K_{\ref{eq:f(h\vert r,B)}}$ can be determined if needed by setting the integral of $f({\bf h }\vert{\bf r},{\bf B})$ to 1.

To evaluate (11) we only need the mean and covariance of ${\bf h}$ given ${\bf r}$ and ${\bf B}$using the distribution of (12). We will derive these for specific cases of $f({\bf h})$ subsequently; for now, we define them symbolically as ${\bf g}$ and ${\bf G}$:

  
$\displaystyle {\bf g}$ $\textstyle \stackrel {\triangle} {=}$ $\displaystyle E[{\bf h}\vert{\bf r},{\bf B}]$ (13)
$\displaystyle {\bf G}$ $\textstyle \stackrel {\triangle} {=}$ $\displaystyle E[({\bf h} - {\bf g}) ({\bf h} - {\bf g})^{*T} \vert{\bf r},{\bf B}] .$ (14)

The noise variance $\sigma^2$ is needed in general to compute ${\bf g}$ and ${\bf G}$. If $\sigma^2$is not known it could be estimated from the variances of the transmitted and received data.

The norm-squared term in (11), for each candidate ${\bf A}$, can be represented as a path through a trellis, whose states at a given time are the states of the of the ISI channel. A path represents a summation of incremental state transition costs. The minimum cost path can be determined by the Viterbi algorithm.

Rewriting (11) in terms of the incremental costs:

 \begin{displaymath}Q({\bf A}\vert{\bf B}) \doteq - \sum_{k=1}^N V_k ,
\end{displaymath} (15)

where Vk is:

 \begin{displaymath}V_k = E[\vert r_k - {\bf a}_k^T {\bf h}\vert^2 \ \vert{\bf r},{\bf B}] .
\end{displaymath} (16)

The expected value is taken over ${\bf h}$ using (12) for $f({\bf h }\vert{\bf r},{\bf B})$.

Expanding the norm squared:

 
$\displaystyle \vert r_k - {\bf a}_k^T {\bf h} \vert^2$ = $\displaystyle \vert r_k\vert^2 - r_k {\bf a}_k^{*T} {\bf h}^* - r_k^* {\bf a}_k^T {\bf h}
+ {\bf a}_k^T {\bf h}{\bf h}^{*T}{\bf a}_k^*$  
  = $\displaystyle \vert r_k\vert^2 - r_k {\bf a}_k^{*T} {\bf h}^* - r_k^* {\bf a}_k^T {\bf h}$  
    $\displaystyle + {\bf a}_k^{T} ({\bf h}-{\bf g})({\bf h}-{\bf g})^{*T} {\bf a}_k^*$ (17)
    $\displaystyle + \ {\bf a}_k^{T} {\bf h}{\bf g}^{*T} {\bf a}_k^* +
{\bf a}_k^{T} {\bf g}{\bf h}^{*T} {\bf a}_k^* -
{\bf a}_k^{T} {\bf g}{\bf g}^{*T} {\bf a}_k^* .$  

Taking the expected value over ${\bf h}$:

 
Vk = $\displaystyle \vert r_k\vert^2 - r_k {\bf a}_k^{*T} {\bf g}^* - r_k^* {\bf a}_k...
...{\bf a}_k^{T} {\bf G}{\bf a}_k^*
+ {\bf a}_k^{T} {\bf g}{\bf g}^{*T}{\bf a}_k^*$  
  = $\displaystyle \vert r_k - {\bf a}_k^T {\bf g}\vert^2 + {\bf a}_k^{T} {\bf G}{\bf a}_k^*.$ (18)

Equation (18) represents the general form of the Viterbi algorithm incremental cost function for random ISI channels. To use (18) in an EM algorithm, ${\bf g}$ and ${\bf G}$ from (13) and (14) are computed in the M-step; these computations depend on the specific form of the apriori channel distribution $f({\bf h})$. The following subsections examine the specific cases of deterministic, uniform, and Gaussian $f({\bf h})$.



 
next up previous
Next: Deterministic Channel Coefficients Up: EM Algorithms for Sequence Previous: EM and ML Sequence
Rick Perry
1999-10-28